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Kurzfassung

Automatische Beweiser finden ihre Anwendungen in der künstlichen Intelligenz und in
der formalen Verifikation, wo sie etwa zur Fehlerfindung in Software und Hardware oder
zur Lösung komplexer mathematischer Probleme verwendet werden. In dieser Arbeit
präsentieren wir Methoden des automatischen Beweisens, welche auf der syntaktischen
Modifikation logischer Formeln basieren. Unsere Methoden beschäftigen sich mit Formeln
der Aussagenlogik und der Prädikatenlogik sowie mit quantifizierten Boole’schen Formeln.

Im ersten Teil der Arbeit führen wir eine Reihe sogenannter Redundanzkriterien ein.
Solche Redundanzkriterien beschreiben hinreichende Bedingungen, welche es erlauben,
eine logische Formel zu modifizieren ohne dabei ihre Erfüllbarkeit zu beeinflussen. In
einem weiteren Schritt verwenden wir dann einige dieser Redundanzkriterien, um neue
Beweissysteme für die Aussagenlogik zu entwickeln. Wir demonstrieren mithilfe klas-
sischer Methoden der Beweiskomplexität, dass unsere Beweissysteme nicht nur enorm
ausdrucksstark sind, sondern dass sie sich auch bestens zur Automatisierung eignen.
Um die Vorteile dieser Beweissysteme auszunutzen, führen wir dann eine neue Methode
des automatischen Beweisens für die Aussagenlogik ein. Unsere Methode erweitert die
erfolgreiche conflict-driven clause learning (CDCL) Methode, indem sie den Suchraum
möglicher Wahrheitswerte massiv einschränkt. Wir zeigen experimentell, dass ein au-
tomatischer Beweiser mit unserer neuen Methode eine Reihe von logischen Formeln
beweisen kann, welche aufgrund theoretischer Einschränkungen zu schwer für klassische
CDCL-Beweiser sind.

Im zweiten Teil der Arbeit führen wir prädikatenlogische Generalisierungen für etliche
Redundanzkriterien aus der Aussagenlogik ein. Viele dieser Redundanzkriterien wurden
bisher erfolgreich zur automatischen Evaluierung aussagenlogischer Formeln verwendet,
jedoch war nicht klar, ob sie auch für die Prädikatenlogik korrekt sind. Wir beweisen
die Korrektheit unserer Generalisierungen mithilfe des Prinzips der Implikation Modulo
Resolution. Das Prinzip der Implikation Modulo Resolution ist eine prädikatenlogische
Verallgemeinerung von quantified implied outer resolvents, welche aus der Theorie quanti-
fizierter Boole’scher Formeln stammen. In einem weiteren Schritt verwenden wir dann die
generalisierten prädikatenlogischen Redundanzkritieren, um Techniken zur Redundanzeli-
mination in logischen Formeln zu entwickeln. In einer detaillierten Analyse untersuchen
wir die Konfluenzeigenschaften dieser Techniken und illustrieren deren praktischen Nut-
zen, indem wir einen neuen Präprozessor für prädikatenlogische Beweiser implementieren.
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Anhand einer experimentellen Auswertung zeigen wir, dass durch die Verwendung dieses
Präprozessors die Effizienz automatischer Beweiser signifikant erhöht werden kann.

Zu guter Letzt verwenden wir syntaktische Modifikationstechniken, um einen beweistheo-
retischen Zusammenhang zwischen zwei Kalkülen für quantifizierte Boole’sche Formeln,
genannt Long-Distance-Resolutionskalkül und QRAT-Kalkül, herzustellen. Diverse For-
schungsergebnisse aus den letzten Jahren belegen den großen praktischen Nutzen des
Long-Distance-Resolutionskalküls. Es war allerdings bisher unklar, ob sich der Long-
Distance-Resolutionskalkül durch den QRAT-Kalkül polynomiell simulieren lässt. Wir
beweisen, dass eine solche Simulation tatsächlich möglich ist, indem wir eine Prozedur
beschreiben, welche Beweise des Long-Distance-Resolutionskalküls in QRAT-Beweise
transformiert.



Abstract

Automated-reasoning tools have various applications in artificial intelligence and formal
verification, ranging from the detection of bugs in software and hardware to the solution
of long-standing mathematical problems. In this thesis, we present automated-reasoning
methods that modify the syntactic structure of logical formulas. In particular, we deal
with formulas from propositional logic and first-order logic as well as with quantified
Boolean formulas.

In the first part of the thesis, we introduce so-called redundancy properties that charac-
terize cases in which formulas can be modified without affecting their satisfiability or
unsatisfiability. Based on some of these redundancy properties, we then define new strong
proof systems for propositional logic. As we demonstrate, these proof systems are not
only highly expressive but also well-suited for automation. Harnessing their advantages,
we define a satisfiability-solving paradigm that generalizes the well-known conflict-driven
clause learning (CDCL) paradigm by pruning the search space more aggressively. In an
empirical evaluation, we show that a solver based on our paradigm can solve formulas
that are—due to theoretical restrictions—too hard for ordinary CDCL solvers.

In the second part of the thesis, we lift several popular redundancy properties from
propositional logic to first-order logic. Many of these redundancy properties have been
successfully used in satisfiability solving but it was unclear if they could be lifted
to first-order logic. We lift them in a uniform way by introducing the principle of
implication modulo resolution, which is a generalization of so-called quantified implied
outer resolvents known from the theory of quantified Boolean formulas. Using these
redundancy properties, we then define corresponding clause-elimination techniques and
analyze their confluence properties in detail. To illustrate their practical usefulness, we
implemented and evaluated a preprocessing tool that boosts the performance of theorem
provers by eliminating blocked clauses from first-order formulas.

Finally, we show how satisfiability-preserving formula modifications can be used to clarify
the relationship between two important proof systems for quantified Boolean formulas—
the long-distance-resolution calculus and the QRAT proof system. Recently, it has been
shown that long-distance resolution is remarkably powerful both in theory and in practical
QBF solving. It was, however, unknown how long-distance resolution is related to QRAT,
a proof system introduced for certifying the correctness of QBF-preprocessing techniques.
We show that QRAT polynomially simulates long-distance resolution.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Historical Context and Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Redundant Clauses in Propositional Logic 11
2.1 Locally Redundant Clauses . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Blocked Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 A Semantic Notion of Blocking . . . . . . . . . . . . . . . . . . 16
2.1.3 Set-Blocked Clauses and Super-Blocked Clauses . . . . . . . . . 18
2.1.4 Relationship Between Set-Blocked Clauses and Autarkies . . . . 21
2.1.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Globally Redundant Clauses . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Globally Redundant Clauses From the Literature . . . . . . . . 29
2.2.2 Characterizing Clause Redundancy via Implication . . . . . . . 33
2.2.3 Propagation-Redundant Clauses . . . . . . . . . . . . . . . . . 35
2.2.4 Globally-Blocked Clauses . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Relation to Concepts From the Literature . . . . . . . . . . . . . . . . 42

3 Proof Systems Based on Redundant Clauses 45
3.1 Clausal Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Short PR Proofs of the Pigeon Hole Principle . . . . . . . . . . . . . . 49
3.3 Checking the Correctness of PR proofs . . . . . . . . . . . . . . . . . . 54

4 Satisfaction-Driven Clause Learning 57
4.1 Conflict-Driven Clause Learning . . . . . . . . . . . . . . . . . . . . . 58

xi



4.2 Generalizing Conflict-Driven Clause Learning . . . . . . . . . . . . . . 59
4.3 Pruning Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Shortening Learned Clauses . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Redundant Clauses in First-Order Logic 69
5.1 First-Order Logic Without Equality . . . . . . . . . . . . . . . . . . . 70

5.1.1 Implication Modulo Resolution . . . . . . . . . . . . . . . . . . 72
5.1.2 Blocked Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Asymmetric Tautologies and RATs . . . . . . . . . . . . . . . . 75
5.1.4 Covered Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.5 Resolution-Subsumed Clauses and More . . . . . . . . . . . . . 80
5.1.6 Confluence Properties of Elimination Techniques . . . . . . . . . 81

5.2 First-Order Logic With Equality . . . . . . . . . . . . . . . . . . . . . 84
5.2.1 Implication Modulo Flat Resolution . . . . . . . . . . . . . . . 85
5.2.2 Predicate Elimination . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Equality-Blocked Clauses . . . . . . . . . . . . . . . . . . . . . 89

5.3 Blocked-Clause Elimination in Practice . . . . . . . . . . . . . . . . . . 89
5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Relation to Existing Preprocessing Techniques . . . . . . . . . . 91
5.3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 92

6 QRAT Simulates Long-Distance Resolution 97
6.1 Quantified Boolean Formulas . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Resolution-Based Proof Systems . . . . . . . . . . . . . . . . . 99
6.1.2 The Proof System QRAT Light . . . . . . . . . . . . . . . . . . 100

6.2 Illustration of the Simulation . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 QRAT Derivation of the Formula φ′ . . . . . . . . . . . . . . . 103
6.3.2 Modification of the Long-Distance-Resolution Proof . . . . . . 104

6.4 Correctness of the Simulation . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Complexity of the Simulation . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.7 QRAT and Other Resolution-Based Proof Systems . . . . . . . . . . . . 111

7 Conclusion and Future Work 115
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

List of Figures 119

List of Tables 121

Index 123



Bibliography 127





CHAPTER 1
Introduction

In this thesis, we introduce techniques that improve automated-reasoning methods by
modifying the syntactic structure of logical formulas.

1.1 Historical Context and Motivation
An old man walks into a bar and orders a Scotch. The bartender asks him, “Do you
want water with your Scotch?” to which the old man replies, “I’m thirsty, not dirty!”
Not asking any further questions, the bartender prepares the Scotch—without water
of course—and hands it over to the old man, who’s happy he can finally quench his
thirst. What just happened here? At no point did the old man state explicitly that he
didn’t want water with his Scotch; yet still, we knew exactly that he preferred his Scotch
straight.

What happens in this old joke of Joe E. Lewis is that we reason: We combine existing
facts to derive new information. When the old man claims he’s thirsty and not dirty,
he’s telling us two facts. First, he only wants water if he’s dirty, and second, he isn’t
dirty. From these two facts we then conclude that he doesn’t want water.

Now consider the following textbook example: Suppose a street can only be wet if it
rains, and that it hasn’t rained. Is the street wet at the moment? Of course not. We
draw this conclusion easily and we actually use the same pattern of reasoning as before.
It becomes obvious when we write down the two examples below each other:

He only wants water if he’s dirty. He isn’t dirty. ⇒ He doesn’t want water.
The street is only wet if it rains. It hasn’t rained. ⇒ The street isn’t wet.

Although the examples differ in their content—one is about a thirsty old man while the
other is about a dry street—the pattern is the same:
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1. Introduction

A only if B. Not B. ⇒ Not A.

We could even plug other statements into this pattern and—applying the pattern—we
would still arrive at sound conclusions. So when we reason, we seem to apply patterns
that are independent of the actual content. It is this observation that started our study of
logic more than two thousand years ago, which has led to some of the greatest intellectual
discoveries of humankind.

The story begins with Aristotle (384–322 BC). Although others had already dealt with
some forms of reasoning before him, he can be considered the first to study logic
systematically [HS18]. In the so-called Organon—a collection of his logical writings—he
discussed several aspects of logic, most well-known among these is perhaps his theory of
the syllogism: A syllogism is a logical pattern in which a conclusion is derived from two
premises. Aristotle distinguished 256 different patterns and analyzed which of them lead
to valid conclusions.

After Aristotle, logic was investigated by numerous scholars but it took many centuries
until the works that most influenced modern logic were developed. Tracing back to
Aristotle and strongly influenced by Wilhelm Leibniz (1646–1716), people realized at
some point that logical reasoning could possibly be reduced to computation. The idea
was to take certain statements and then perform a series of computation steps to derive
conclusions from these statements. In order to make this work, a language is required that
allows one to rigorously formulate logical statements. Enter George Boole (1815–1864).
He invented such a language together with algebraic inference rules that can be used
to show that a conclusion follows from given premises. Boole’s impact on logic was so
tremendous that even today the logical data types in most programming languages are
named after him.

Now if you consider that logical reasoning is the daily bread of mathematicians—they
usually reason logically to show that a theorem follows from a set of axioms—wouldn’t
it be great to have a precise language that is expressive enough so you can formu-
late mathematical statements and then check their correctness? That’s what Gottlob
Frege (1848–1925) must have thought before he came up with his Begriffsschrift (concept
notation)—a language in which he could express complex statements and proofs beyond
what was possible with Aristotle’s syllogisms or even Boole’s language. His goal was to
formulate large parts of mathematics in his language in order to reduce mathematics to
pure logic and to get rid of all vagueness. He had spent years developing his language
and had thought he was close to his goal before receiving a devastating letter from a
young Bertrand Russell (1872–1970).

Until that point, logic had been on the rise, starting out from the simple syllogisms and
developing into a rich language created to formalize all of mathematics. But Russell’s
letter represents a turning point in the history of logic. In the letter, Russell showed
how he could formulate a paradoxical statement, today known as Russell’s paradox, in
Frege’s language. In particular, he was able to define the set of all sets that don’t contain
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themselves. When we ask if that set contains itself, we end up with a contradiction: in
case it contains itself, it doesn’t contain itself; in case it doesn’t contain itself, it contains
itself. This rendered Frege’s Begriffsschrift virtually useless for mathematics.

A natural consequence was then to restrict Frege’s language in the hope of obtaining a
logical language that forbids the formulation of paradoxical statements while still being
expressive enough for mathematics. This eventually led to the development of a logic
that was first presented by Hilbert and Ackermann [HA28] and that is still in use today—
first-order logic. From then on, things went quicker than in the centuries before. In 1929,
Kurt Gödel proved that for every theorem in first-order logic, there exists a proof whose
correctness can be verified in a straightforward way [Göd29]. Moreover, it was—at least
in theory (not in practice)—possible to find these proofs automatically. But what about
sentences in first-order logic that are not theorems? Can they be identified automatically?
As Alonzo Church [Chu36] and Alan Turing [Tur37] could show independently of each
other, there cannot exist an algorithm that takes an arbitrary sentence in first-order
logic and decides whether or not the sentence is a theorem. This fact is known as the
undecidability of first-order logic.

So even first-order logic, the result of many centuries of research, suffers from severe
restrictions. Moreover, already before the discoveries of Church and Turing, the idea
of reducing mathematics to computation had been dealt a huge blow by Kurt Gödel’s
incompleteness results: He proved that in every formal system that is capable of ex-
pressing basic arithmetic, there exist true statements that are not provable within that
system [Göd31]. This means that there cannot exist an algorithm that can prove all
truths of mathematics.

Was it now finally time for logicians to go home and find another hobby? Not quite.
The negative results of Gödel, Church, and Turing showed what cannot be done, but
there were still a lot of things that could be done. This became even more true with
the advent of the computer. Until then, when logicians had talked about computation,
they had meant things you would do with pen and paper, or with simple machinery. But
with the computer, reasoning problems of immense complexity had suddenly become
approachable and so mathematicians and computer scientists set out to develop powerful
automated-reasoning engines for several application areas: If you can use logic to reason
about mathematical objects, why not use it for other tasks like proving the correctness
of computer programs or reasoning about real-world knowledge?

History has shown that finding the perfect logical language is a hard task. Make your
language too expressive and you end up with problems like Russell’s paradox or the
undecidability of first-order logic. Make it too simple and it becomes useless. With the
availability of computers, finding the right level of expressivity has become even more
important. Suddenly, it’s not only relevant what sort of logical reasoning problems are
solvable in theory but what problems can actually be solved by computers in practice.

Computational efficiency has become critical and people have understood that there
might not be the one true logic but that the right choice of logic depends on the problem

3



1. Introduction

at hand. Because of this, there are now numerous different logics with varying degrees of
expressivity. Still, a few of them stand out, and in this thesis we focus on three of them.

First, there is first-order logic, which—despite its drawbacks—is considered one of the
most important logics out there. It is the logical language of mathematics and allows to
model complex problems because of its high level of expressivity.

Then there is propositional logic, which can be seen as a restriction of first-order logic.
Propositional logic is less expressive than first-order logic but if your reasoning problem
can be compactly represented in propositional logic, chances are that a dedicated reasoning
engine—a so-called SAT solver—can solve it much more efficiently (using less time and
memory) than an automated reasoner for first-order logic. Because of this, it is used for
all kinds of problems such as the verification of hardware and software, applications in
cybersecurity, bioinformatics, and many more.

Finally, there are quantified Boolean formulas (QBFs). They can be seen as an intermedi-
ate logic between the other two: potentially more succinct than propositional logic while
allowing for more efficient reasoning than first-order logic. They thus allow the compact
formulation of problems whose representation in propositional logic might be complicated.
On the other hand, not every problem from first-order logic can be expressed with QBFs
and the reasoning seems harder than in propositional logic.

For all three logics, there are automated-reasoning engines which compete against each
other in regular competitions to find the most efficient among them. And while some of
these engines are already quite powerful, there are still many practical reasoning problems
that are far beyond their reach. In this thesis, we present techniques that improve the
performance of automated-reasoning engines, to make them more efficient and thus more
useful.

Our approach modifies the syntactic structure of logical formulas: We remove certain
redundant parts and add other useful parts, either before the actual reasoning (so-called
preprocessing) or as an essential part of the reasoning itself. We thus view a logical
formula as if it were a badly written textbook: The book might be hard to read in the
beginning, but if we cross out unnecessary or misleading parts, and if we add useful
comments, it might eventually become understandable enough so we can efficiently read
through it.

1.2 Background

As already mentioned, we deal with propositional logic, quantified Boolean formu-
las (QBFs), and first-order logic. The latter two can both be seen as generalizations of
propositional logic. A simple example for a propositional formula is the following one:

(x ∨ ȳ)︸ ︷︷ ︸
(1)

∧ (x̄ ∨ y)︸ ︷︷ ︸
(2)

.

4



1.2. Background

Intuitively, this formula says that (1) x should be true or y should be false, and (2) x
should be false or y should be true. If we pass this formula to an automated-reasoning
engine, the engine tries to find out whether or not it can assign truth values (true or
false) to the variables x and y such that the formula as a whole becomes true. With the
above formula, we can check by hand that the formula can be made true—just assign
true to both x and y (or, alternatively, assign false to both x and y).

In general, formulas of propositional logic are obtained by combining propositional
variables (like x, y, and z above) and their negations (x̄, ȳ, z̄) with logical connectives
such as ‘∧’ (‘and’), ‘∨’ (‘or ’), or ‘→’ (‘implies’). By allowing quantification over the
truth values of propositional variables, we obtain quantified Boolean formulas. We can
use quantified Boolean formulas to ask, for instance, if there exists a truth assignment to
the variable x such that, for every truth value of y, the above propositional formula is
true:

∃x∀y.(x ∨ ȳ) ∧ (x̄ ∨ y).

In contrast to the propositional formula, this QBF cannot be true: in case x is true, we
can make y false to make the formula false; in case x is false, we can make y true to
make the formula false. The quantification over propositional variables allows for succinct
formulations of reasoning problems but it also appears to make reasoning harder.

Finally, first-order logic is a generalization of propositional logic that—like quantified
Boolean formulas—is obtained by adding quantification. However, in first-order logic
we are not allowed to quantify over the truth values of propositional variables but over
so-called domain variables. Moreover, instead of only simple propositional variables,
first-order logic allows predicates over domain variables. For instance, in first-order logic
we can use the domain variable x and the predicates H, R, and P to formulate the
sentence “All humans are rich or poor.” as follows:

∀x(H(x)→ R(x) ∨ P (x)).

The formulas we considered so far are simple. In practice, however, we often deal
with gigantic formulas that can contain millions of variables, and then things get more
complicated. Already in propositional logic, if we attempt to evaluate a formula by
naively trying out all possible assignments of truth values to its variables, we run into
serious problems: for every formula with n variables, there are 2n possible assignments,
meaning that a simple formula with only 32 variables might require us to try out more
than four billion assignments in the worst case.

More generally, the problem of deciding if a propositional formula is satisfiable (i.e., if it
can be made true) is NP-complete [Coo71] and many scientists believe that there is no
sub-exponential-time algorithm for this problem (a formalization of this belief is known as
the exponential-time hypothesis [IP01]). Things seem even worse for quantified Boolean
formulas, where the same problem is PSPACE-complete [MS72], and for first-order logic,
where we have already seen that it is undecidable.
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1. Introduction

Considering the complexity of these reasoning problems, it’s a surprise there exist
automated-reasoning engines that work quite well in practice. One reason for this is that
practical formulas, although large, often have particular structural properties that can
be exploited by reasoning engines. On such formulas, a smart reasoning engine can do
things that go way beyond the stupid brute-force approach. These things include the
application of powerful inference techniques, the clever search through gigantic (in the
case of first-order logic even infinite) search spaces, and the simplification of formulas
before and during the actual reasoning.

Inference. The use of inference techniques can speed up reasoning significantly. As an
example, assume you want to find an assignment of truth values to variables that makes
the following propositional formula true:

x ∧ (x̄ ∨ y) ∧ (ȳ ∨ z).

Instead of trying out all possible truth assignments, you can immediately make x true
because of the first part of the formula (x). After this, you have to make y true because
otherwise the subformula (x̄∨ y) becomes false. But this again forces you to make z true
in order to make the last subformula, (ȳ ∨ z), true. You end up with an assignment that
makes the whole formula true—without having to naively try out various assignments—
because you could infer truth values for all variables. Automated-reasoning engines make
heavy use of such inference techniques to increase efficiency.

Search. In the example above, assigning truth values to the variables was straight-
forward. However, things are not always so clear. Oftentimes, reasoning engines for
propositional logic and quantified Boolean formulas can choose between various assign-
ments and the right choice is rarely clear. Because of this, they rely on clever heuristics
that aim at solving a problem as quickly as possible [Kul09]. A similar situation arises
when it comes to choosing a proper inference out of several options. Just blindly applying
inferences can slow down the performance drastically. Because of this, the choice of the
right inference is crucial. This is especially true in first-order logic [KV13].

Simplification. Logical formulas can contain a significant amount of redundant or
misleading information. One reason for this is that formulas are often generated automati-
cally by other tools that use a reasoning engine to solve a certain problem. But sometimes
we simply don’t have an explanation why the structure of a formula is suboptimal. In
any case, the simplification of formulas can greatly improve the reasoning performance.

In this thesis, we introduce techniques that fall in all three of the above categories, but the
focus is on inference and simplification. We achieve this by altering the syntactic structure
of formulas. For instance, we introduce techniques that simply remove redundant formula
parts. But we also introduce techniques that add new formula parts during the reasoning
and thereby guide the search of a solver or enable new inferences. By modifying the
structure of formulas, we thus influence several aspects of reasoning.
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Our structural modifications are closely related to proof systems. Informally, a proof
system defines the techniques that can be performed by an automated-reasoning engine.
Moreover, in many cases we require reasoning engines to justify their results by producing
a verifiable output that can be checked efficiently; this output is called a proof, and the
form of a proof depends on the specific proof system a reasoning engine is based on. A
proof system thus also describes the language in which a reasoning engine communicates
its results. Therefore, because it defines the reasoning techniques and the output language,
the underlying proof system of a reasoning engine affects both its runtime and the size of
its output.

1.3 Contributions
The main contributions of this thesis are a range of techniques that improve automated-
reasoning methods by modifying the structure of logical formulas.

We introduce several so-called redundancy properties for propositional logic that character-
ize cases in which the modification of a formula does not affect the output of a reasoning
engine. More precisely, redundancy properties specify subformulas whose addition or
removal does not change the satisfiability status of a formula—we call these subformulas
redundant clauses. Based on the idea of adding redundant clauses to a formula, we then
use these redundancy properties to introduce powerful proof systems. Using techniques
from the field of proof complexity, we prove that our proof systems are stronger than the
standard proof system in practical SAT solving (the so-called resolution proof system).

In particular, there exist several seemingly simple formulas for which a typical resolution-
based SAT solver needs exponential time because of restrictions that apply to its un-
derlying proof system. At the time of writing, there are no known formulas for which
this restriction applies to our new proof systems. To harness the power of our new proof
systems, we introduce a new SAT solving paradigm called satisfaction-driven clause
learning (SDCL), which is a generalization of the popular conflict-driven clause learning
(CDCL) paradigm [MSS99, MMZ+01]. In an experimental evaluation, we show that a
solver based on our new paradigm can prove the unsatisfiability of formulas that are
beyond the reach of conventional SAT solvers.

After this, we focus again on redundant clauses, but then in first-order logic. There,
we often have to deal with formulas that contain a considerable amount of redundant
information. To speed up the proving process, the reasoning engines (called theorem
provers) usually employ dedicated preprocessing methods that aim at simplifying formulas
as much as possible. Many of these techniques eliminate redundant clauses from formulas
in conjunctive normal form. However, there exists a wide variety of redundancy properties
from the propositional world for which it was unclear if they could be lifted to first-order
logic. We lift various of these redundancy properties to first-order logic in a uniform way
by introducing the principle of implication modulo resolution, a first-order generalization
of quantified implied outer resolvents as presented by Heule et al. [HSB16] in the context
of quantified Boolean formulas.
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Finally, we use syntactic modification techniques for quantified Boolean formulas to
clarify the relationship between two important proof systems for QBF: the long-distance-
resolution proof system and the QRAT proof system. The former is at the basis of many
practical reasoning engines for QBF while the latter is able to express most preprocessing
techniques used for QBF. We prove that the QRAT system is stronger than the long-
distance-resolution system by presenting an algorithm that feasibly transforms long-
distance-resolution proofs into QRAT proofs. Based on our algorithm, we implemented a
tool that performs this transformation. With our tool it is possible to produce a single
QRAT proof that combines the output of a QRAT-based preprocessor with that of a
long-distance-resolution-based reasoning engine into a single uniform QRAT proof that
certifies the correctness of the whole reasoning pipeline.

To summarize, our main contributions are as follows:

• We introduce novel redundancy properties for propositional logic.

• We present new proof systems for propositional logic that are based on the addition
of redundant clauses.

• We introduce satisfaction-driven clause learning, a new SAT solving paradigm that
harnesses the power of our new proof systems.

• We lift a range of popular redundancy properties from propositional logic to
first-order logic in a uniform way.

• We introduce a procedure for quantified Boolean formulas that, based on the
modification of formulas, transforms proofs from one proof system into another.

1.4 Publications

This thesis is based on the following publications (joint work is presented with the
permission of all co-authors):

[KSTB16] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Super-
Blocked Clauses. In: Proceedings of the 8th International Joint Conference
on Automated Reasoning (IJCAR 2016), volume 9706 of LNCS, pages
45–61. Springer, 2016.

[KSS+17] Benjamin Kiesl, Martin Suda, Martina Seidl, Hans Tompits, and Armin
Biere. Blocked Clauses in First-Order Logic. In: Proceedings of the 21st
International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR-21), volume 46 of EPiC Series in Computing, pages
31–48. EasyChair, 2017.
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1.4. Publications

[HKB17] Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere. Short Proofs Without
New Variables. In: Proceedings of the 26th International Conference on
Automated Deduction (CADE-26), volume 10395 of LNCS, pages 130–147.
Springer, 2017. Best Paper Award.

[KS17] Benjamin Kiesl and Martin Suda. A Unifying Principle for Clause Elim-
ination in First-Order Logic. In: Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of LNCS,
pages 274–290. Springer, 2017. Best Paper Award.

[KSTB17] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Blocked-
ness in Propositional Logic: Are You Satisfied With Your Neighborhood?
In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI 2017), pages 4884–4888. ijcai.org, 2017. Invited
paper for the best sister conference paper track based on our
IJCAR 2016 paper [KSTB16].

[KHS17] Benjamin Kiesl, Marijn J.H. Heule, and Martina Seidl. A Little Blocked
Literal Goes a Long Way. In: Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2017), volume 10491 of LNCS, pages 281–297. Springer, 2017.

[HKSB17] Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere.
PRuning Through Satisfaction. In: Proceedings of the 13th Haifa Verifi-
cation Conference (HVC 2017), volume 10629 of LNCS, pages 179–194.
Springer, 2017. Best Paper Award.

[KSTB18] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Local
Redundancy in SAT: Generalizations of Blocked Clauses. In: Logical
Methods in Computer Science, vol. 14(4), 2018.

[HKB19a] Marijn Heule, Benjamin Kiesl, and Armin Biere. Encoding Redundancy
for Satisfaction-Driven Clause Learning. In: Proceedings of the 25th
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2019). Accepted for Publication.

[HKB19b] Marijn Heule, Benjamin Kiesl, and Armin Biere. Strong Extension-Free
Proof Systems. In: Journal of Automated Reasoning. Accepted for
Publication.
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The following publications were also written as part of the PhD but are beyond the scope
of this thesis:

[HK17] Marijn J.H. Heule and Benjamin Kiesl. The Potential of Interference-
Based Proof Systems. In: Proceedings of the 1st ARCADE Workshop
(ARCADE 2017), volume 51 of EPiC Series in Computing, pages 51–54.
EasyChair, 2017.

[KRH18] Benjamin Kiesl, Adrian Rebola-Pardo, and Marijn J.H. Heule. Extended
Resolution Simulates DRAT. In: Proceedings of the 9th International
Joint Conference on Automated Reasoning (IJCAR 2018), volume 10900
of LNCS, pages 516–531. Springer, 2018. Best Paper Award.

1.5 Overview
The rest of this thesis is structured as follows. In Chapter 2, which is based on our
papers [KSTB16], [KSTB17], [KSTB18], [HKB17], and [HKB19b], we present new redun-
dancy properties for propositional logic. Based on some of these redundancy properties, we
then introduce new proof systems in Chapter 3, which is based on [HKB17] and [HKB19b].
In Chapter 4, we present satisfaction-driven clause learning, a SAT solving paradigm
that harnesses the strengths of our new proof systems. Chapter 4 is based on our
papers [HKSB17] and [HKB19a]. In Chapter 5, we lift various redundancy properties
from propositional logic to first-order logic. We also present experimental evidence for
the effectiveness of a clause-elimination technique based on such redundancy properties.
Chapter 5 is based on [KSS+17] and [KS17], except for the sections on implication modulo
flat resolution (Sections 5.2.1 and 5.2.2), which haven’t yet been published. In Chapter 6,
which is based on [KHS17], we present our simulation results for proof systems in QBF.
Finally, in Chapter 7, we conclude and discuss future work.
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CHAPTER 2
Redundant Clauses in

Propositional Logic

In the following, we introduce redundancy properties that characterize cases in which the
addition or removal of a formula part (a so-called clause) does not affect the satisfiability
status of a propositional formula. Some of these redundancy properties form the basis
of the proof systems and the satisfaction-driven clause learning paradigm which we will
introduce in later chapters.

We consider propositional formulas in conjunctive normal form (CNF), which are defined
as follows. A literal is either a variable x (a positive literal) or the negation x̄ of a
variable x (a negative literal). We say that positive (negative) literals are of positive
(negative, respectively) polarity. The complement l̄ of a literal l is defined as l̄ = x̄ if l = x
and l̄ = x if l = x̄. For a literal l, we denote the variable of l by var(l). A clause is a finite
disjunction of the form (l1 ∨ · · · ∨ ln) where l1, . . . , ln are literals. We denote the empty
clause by ⊥. A clause that contains both a literal and its complement is a tautology . A
formula is a finite conjunction of the form C1 ∧ · · · ∧ Cm where C1, . . . , Cm are clauses.
For example, (x ∨ ȳ) ∧ (z) ∧ (x̄ ∨ y ∨ z̄) is a formula consisting of the clauses (x ∨ ȳ),
(z), and (x̄ ∨ y ∨ z̄). If not stated otherwise, we assume that formulas do not contain
tautologies. Clauses can be viewed as sets of literals, and formulas can be viewed as sets
of clauses. For a set L of literals and a formula F , we define FL = {C ∈ F | C ∩ L 6= ∅}.
We sometimes write Fl to denote F{l}.

An assignment is a function from a (possibly infinite) set of variables to the truth values
1 (true) and 0 (false). An assignment is total with respect to a given formula if it assigns
truth values to all variables occurring in the formula. We denote the domain of an
assignment α by var(α). We often denote finite assignments by the sequences of literals
they satisfy. For instance, the sequence x ȳ denotes the assignment that assigns 1 to x
and 0 to y. A literal l is satisfied by an assignment α if l is positive and α(var(l)) = 1 or
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2. Redundant Clauses in Propositional Logic

if l is negative and α(var(l)) = 0. A literal is falsified by an assignment if its complement
is satisfied by the assignment. A clause is satisfied by an assignment α if it contains
a literal that is satisfied by α; it is falsified by α if α falsifies all its literals. Finally, a
formula is satisfied by an assignment α if all its clauses are satisfied by α.

A formula is satisfiable if there exists an assignment that satisfies it, otherwise it is
unsatisfiable. Two formulas are logically equivalent if they are satisfied by the same
total assignments; they are equisatisfiable if they are either both satisfiable or both
unsatisfiable. A formula F implies a clause C, denoted by F |= C, if every satisfying
assignment of F satisfies C. Analogously, a formula F implies a formula G, denoted by
F |= G, if every satisfying assignment of F satisfies G.

Given an assignment α and a clause C, we define C |α = > if α satisfies C, otherwise
C |α denotes the result of removing from C all literals that are falsified by α. For a
formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}. Moreover, for a set L of
literals, we denote by αL the assignment obtained from α by assigning 1 to all the literals
in L and assigning the same truth value as α to other variables not in var(L). If L is a
singleton set {l}, we sometimes write αl instead of α{l}.

A SAT solver is a computer program that takes as input a propositional formula and
decides whether or not the formula is satisfiable. Intuitively, we consider a clause to be
redundant with respect to a formula if we can add it without affecting the result of a
SAT solver:

Definition 1. A clause C is redundant with respect to a formula F if F and F ∧ C are
equisatisfiable.

Example 1. The clause (x̄ ∨ ȳ) is redundant with respect to the formula (x ∨ y) since
(x∨ y) and (x∨ y)∧ (x̄∨ ȳ) are equisatisfiable (although they are not logically equivalent).

Note that this notion of redundancy differs from other well-known redundancy notions
such as the one of Bachmair and Ganzinger usually employed within the context of
ordered resolution [BG01]. Our notion of redundancy will form the basis for most of
what follows. It can be used for designing techniques that simplify a formula by adding
or removing redundant clauses. It can also be used for defining proof systems that allow
the addition of certain types of redundant clauses.

Note that every satisfying assignment of F ∧ C is trivially a satisfying assignment of F .
To prove that C is redundant with respect to F it therefore suffices to show that the
satisfiability of F implies the satisfiability of F ∧ C. To show this, we often first assume
that there exists an assignment that satisfies F but falsifies C, and then we transform
this assignment into a satisfying assignment of F ∧ C.

Deciding if a clause is redundant with respect to a formula is computationally hard
in general. This led to the development of various efficiently decidable criteria that
guarantee the redundancy of a clause. We call these criteria redundancy properties.
One well-known redundancy property from the literature is the so-called subsumption
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criterion: it says that a clause C is subsumed in a formula F if F contains a clause D
such that D ⊆ C. For example, if F contains the clause (x∨y), then the clause (x∨y∨z)
is subsumed in F . It can be easily shown that subsumed clauses are redundant. In fact, if
C is subsumed in F , then F implies C. To formalize the notion of a redundancy property,
and to compare different redundancy properties, we introduce the following definition:

Definition 2. A redundancy property is a set of pairs (F,C) where C is redundant with
respect to F . A redundancy property P1 is more general than a redundancy property P2
if P2 ⊆ P1, i.e., if every pair (F,C) ∈ P2 is also contained in P1. If P2 ⊂ P1, then P1 is
strictly more general than P2.

Example 2. The set S = {(F,C) | C is subsumed in F} is a redundancy property. The
set IMP = {(F,C) | F implies C} is also a redundancy property. Since every subsumed
clause is implied, S is a subset of IMP and thus IMP is more general than S.

In what follows, we first introduce new redundancy properties that can be decided
without considering the whole formula, by looking only at a subpart of the formula—the
so-called resolution neighborhood of a clause (see Definition 5 on page 15). We call these
redundancy properties local. The focus on local redundancy properties is motivated by
the popular redundancy property of blocked clauses [Kul99], which we also discuss in
detail. After this, we drop the locality restriction and use the insights gained from local
redundancy properties to develop even more general global redundancy properties.

2.1 Locally Redundant Clauses

We first discuss the well-known redundancy property of blocked clauses. We then
introduce the notion of a local redundancy property and provide examples of redundant
clauses that are local but not blocked. After this, we derive a semantic notion of blocking
that generalizes the traditional blocking notion, and we prove that this semantic blocking
notion actually constitutes the most general local redundancy property. To bring this
semantic notion of blocking closer to practical SAT solving, we come up with the syntax-
based redundancy properties of set-blocked clauses and super-blocked clauses—both are
strictly more general than traditional blocked clauses and for super-blocking we prove
that it coincides with our semantic blocking notion. We then show how set-blocked
clauses correspond to so-called autarkies, a well-known concept from the literature [MS85].
Finally, we analyze the complexity of deciding our new local redundancy properties before
we move on to global redundancy properties in the next chapter.

2.1.1 Blocked Clauses

Blocked clauses were initially introduced by Oliver Kullmann as a generalization of the
definition clauses that can be introduced in the proof system of extended resolution [Tse68]
(see page 46). The blocked-clause definition is based on the notion of a resolvent:
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Definition 3. Given two clauses C,D and a literal l such that l ∈ C and l̄ ∈ D, the
clause C ⊗l D = (C \ {l}) ∪ (D \ {l̄}) is the resolvent of C and D upon l.

A blocked clause is a clause for which all resolvents upon one of its literals are tautolo-
gies [Kul99]:

Definition 4. A clause C is blocked in a formula F if it contains a literal l such that
for every clause D ∈ Fl̄, the resolvent C ⊗l D is a tautology.

We say that l blocks C in F , and we denote the set {(F,C) | C is blocked in F} by BC.
Note that a clause can be blocked by more than one of its literals.

Example 3. Consider the formula F = (x̄ ∨ z) ∧ (ȳ ∨ x̄) and the clause (x ∨ y). The
literal x does not block (x ∨ y) in F since the resolvent (x ∨ y)⊗x (x̄ ∨ z) = (y ∨ z) is not
a tautology. However, the literal y blocks (x ∨ y) in F since the only clause in Fȳ is the
clause (ȳ ∨ x̄), and the resolvent (x ∨ y)⊗y (ȳ ∨ x̄) = (x ∨ x̄) is a tautology. Therefore,
(x ∨ y) is blocked in F .

There are several reasons for the popularity of blocked clauses. The elimination of blocked
clauses improves the performance of modern SAT solvers [JBH10, MPW13]. Blocked
clauses also provide the basis for blocked-clause decomposition, a technique that splits
a formula into two parts that become solvable by blocked-clause elimination [HB13].
Blocked-clause decomposition is successfully used for gate extraction, for efficiently finding
backbone variables, and for the detection of implied binary equivalences [BFHB14, IMS15].
Moreover, the winner of the SAT-Race 2015 competition, the solver abcdSAT [Che15],
uses blocked-clause decomposition as a core technology. All this has to do with the fact
that blocked clauses are redundant, which has been shown by Kullmann [Kul99]. We
present the proof here because the idea behind the redundancy of blocked clauses is
crucial for our later observations:

Theorem 1. BC is a redundancy property.

Proof. We have to show that whenever a clause is blocked in a formula, it is redundant
with respect to that formula. Let C be a clause that is blocked by a literal l in a formula
F and suppose there exists an assignment α that satisfies F but falsifies C. We can then
easily turn α into a satisfying assignment αl of C by flipping the truth value of l. This
could only possibly falsify some of the clauses in Fl̄, but the condition that l blocks C
guarantees that these clauses stay satisfied: Let D ∈ Fl̄ be such a clause. Then, since
the resolvent C ⊗l D is a tautology, D must contain a literal k 6= l such that k̄ ∈ C \ {l}.
But then, since α falsifies C, it must satisfy k, and since αl agrees with α on all literals
but l, αl satisfies D. Hence, αl is a satisfying assignment of F ∧ C. We conclude that C
is redundant with respect to F and thus BC is a redundancy property.
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x ∨ ye ∨ y ∨ x̄
ȳ ∨ ē
ȳ ∨ x

Figure 2.1: The clause (x ∨ y) from Example 5 and its resolution neighborhood.

In the above proof, we turn a satisfying assignment of F into a satisfying assignment of
F ∧ C by flipping the truth value of a single literal. This approach is used in practice to
obtain a satisfying assignment of the original formula when blocked clauses have been
removed during preprocessing or inprocessing [JHB12]: Suppose a SAT solver gets an
input formula F and removes blocked clauses to obtain a simplified formula G. The solver
then proceeds by searching for a satisfying assignment of G. Once it has found such an
assignment, it can easily turn it into a satisfying assignment of the original formula F .
The following example illustrates this on a concrete formula:

Example 4. Consider again the formula F = (x̄∨ z)∧ (ȳ∨ x̄) and the clause C = (x∨y)
from Example 3. We already know that y blocks C in F . Now consider the assignment
α = x̄ȳz̄, which satisfies F but falsifies C. Then, the assignment αy = x̄yz̄, obtained
from α by flipping the truth value of y, satisfies not only C but also all clauses of F :
The only clause that could have been falsified by flipping the truth value of y is (ȳ ∨ x̄).
But, since α satisfies x̄ and since αy agrees with α on all variables except y, αy satisfies
(ȳ ∨ x̄) and therefore it is a satisfying assignment of F ∧ C.

One of the particularly important properties of blocked clauses is that for testing if some
clause C is blocked in a formula F it suffices to consider only those clauses of F that can
be resolved with C. We call these clauses the resolution neighborhood of C (although our
definition of the resolution neighborhood appears very natural, we are not aware that it
is used elsewhere in the literature):

Definition 5. The resolution neighborhood RNF (C) of a clause C with respect to a
formula F is the clause set {D ∈ F | ∃ l ∈ D such that l̄ ∈ C}.

This raises the question if there exist redundant clauses that are not blocked but whose
redundancy can be identified by considering only their resolution neighborhood. As we
show in the next example, this is indeed the case:

Example 5. Let C = (x ∨ y) and let F be a formula in which C has the resolution
neighborhood RNF (C) = {(e ∨ y ∨ x̄), (ȳ ∨ ē), (ȳ ∨ x)} (cf. Figure 2.1). The clause C is
not blocked in F but it is redundant:

Suppose there exists an assignment α that satisfies F but falsifies C. As we will see, we
can turn α into a satisfying assignment of F ∧ C by flipping the truth values of literals
in C. By doing so, we do not affect clauses outside the resolution neighborhood of C.
First, note that α must falsify both x and y, and that it must either satisfy or falsify e.
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In case α satisfies e, C can be satisfied by flipping the truth value of x. The only clause
that could possibly be falsified by this is the clause (e ∨ y ∨ x̄), but since the resulting
assignment still satisfies e, the clause stays satisfied.

In case α falsifies e, we can turn it into a satisfying assignment of C by flipping the truth
values of both x and y. By flipping the truth values of x and y, we could possibly falsify
any of the clauses in F . But this is not the case: Since the resulting assignment satisfies
y, the clause (e∨ y∨ x̄) stays satisfied; since it falsifies e, the clause (ȳ∨ ē) stays satisfied;
and since it satisfies x, the clause (ȳ ∨ x) stays satisfied.

2.1.2 A Semantic Notion of Blocking

In the examples of the preceding section, when arguing that a clause C is redundant
with respect to some formula F , we showed that every assignment α that satisfies F
but falsifies C can be turned into a satisfying assignment of F ∧ C by flipping the truth
values of certain literals in C. Since this flipping only affects the truth of clauses in the
resolution neighborhood RNF (C), it suffices to make sure that the resulting assignment
satisfies RNF (C) in order to guarantee that it satisfies F ∧ C. This naturally leads to
the following semantic notion of blocking:

Definition 6. A clause C is semantically blocked in a formula F if, for every satisfying
assignment α of RNF (C), there exists a set L ⊆ C of literals such that αL satisfies
RNF (C) ∪ {C}.

We denote the set {(F,C) | C is semantically blocked in F} by SEMBC. Note that the
set L of literals can possibly be empty and that a clause is semantically blocked if its
resolution neighborhood is unsatisfiable. Note also that the clause C from Example 5 is
semantically blocked.

Theorem 2. SEMBC is a redundancy property.

Proof. Let F be a formula and let C be a clause that is semantically blocked in F . We
show that F ∧ C is satisfiable if F is satisfiable. Suppose there exists an assignment α
that satisfies F but falsifies C. Since α satisfies F , it must satisfy RNF (C), and since C
is semantically blocked in F , there exists a set L ⊆ C of literals such that αL satisfies
RNF (C)∪{C}. Now, since αL differs from α only on variables in var(C), the only clauses
in F that could possibly be falsified by αL are those with a literal l̄ such that l ∈ C. But
those are exactly the clauses in RNF (C), so αL satisfies F ∧ C. Hence, C is redundant
with respect to F and thus SEMBC is a redundancy property.

If a clause C is redundant with respect to some formula F and if this redundancy
can be identified by considering only its resolution neighborhood in F , we expect C
to be redundant with respect to every formula G in which C has the same resolution
neighborhood as in F . This leads us to the notion of a local redundancy property:
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Definition 7. A redundancy property P is local if, for every clause C and any two
formulas F,G with RNF (C) = RNG(C), it holds that (F,C) ∈ P if and only if (G,C) ∈ P.

Note that this is not the only meaningful notion of locality. It would, for instance, also be
possible to define locality by replacing the resolution neighborhood RN in our definition
by the set of clauses whose variables coincide with the variables in C. Nevertheless,
Definition 7 is the locality notion we shall use in the following. Clearly, the redundancy
property of semantically blocked clauses is local:

Theorem 3. SEMBC is a local redundancy property.

Preparatory for showing that SEMBC is actually the most general local redundancy
property (cf. Theorem 5 below), we first prove the following lemma:

Lemma 4. If a clause C is not semantically blocked in a formula F , then there exists a
formula G such that RNG(C) = RNF (C) and C is not redundant with respect to G.

Proof. Let F be a formula and let C be a clause that is not semantically blocked in F .
This means that there exists a satisfying assignment α of RNF (C) but there does not
exist a set L ⊆ C of literals such that αL satisfies RNF (C) ∪ {C}. In other words, there
exists no satisfying assignment of RNF (C) ∪ {C} that agrees with α on all variables
x /∈ var(C). We define a set A of unit clauses as follows:

A = {(x) | x /∈ var(C) and α(x) = 1} ∪ {(x̄) | x /∈ var(C) and α(x) = 0}.

We further define the formula G = RNF (C) ∪A.

Since the clauses in A contain only literals with variables that do not occur in C, it holds
that neither C nor any of the clauses in A contain a literal l̄ with l ∈ C. It therefore
holds that RNG(C) = RNF (C).

Now observe the following: The assignment α satisfies RNF (C) and, by construction,
also A, hence G is satisfiable. Furthermore, every satisfying assignment of A must
agree with α on all variables x /∈ var(C). But there exists no satisfying assignment of
RNF (C)∪{C} that agrees with α(x) on all x /∈ var(C). Hence, RNF (C)∪A∪{C} = G∧C
is unsatisfiable and thus G and G ∧ C are not equisatisfiable. It follows that C is not
redundant with respect to G.

Theorem 5. SEMBC is the most general local redundancy property.

Proof. Towards a contradiction, suppose there exists a local redundancy property P
that is strictly more general than SEMBC. It follows that P contains a pair (F,C) such
that C is not semantically blocked in F . By Lemma 4, there exists a formula G with
RNG(C) = RNF (C) such that C is not redundant with respect to G. But since P is
local and RNG(C) = RNF (C), it follows that (G,C) ∈ P, hence P is not a redundancy
property, a contradiction.
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2.1.3 Set-Blocked Clauses and Super-Blocked Clauses

In the following, we introduce syntax-based notions of blocking which generalize the
original notion of blocking as given in Definition 4. We first present the notion of
set-blocking, which is already a strict generalization of blocking. After this, we further
generalize set-blocking to the so-called notion of super-blocking which, as we will prove,
coincides with the notion of semantic blocking given in Definition 6. To define set-blocking,
we first introduce so-called set-resolvents:

Definition 8. Given two clauses C,D and a set L of literals, the clause C ⊗L D =
(C \ L) ∪ (D \ L̄) is the set-resolvent of C and D upon L.

Note that we do not require C and D to contain any of the literals in L or L̄. Note also
that, in contrast to ordinary resolvents, a set-resolvent is not necessarily implied by its
premises.

Definition 9. A clause C is set-blocked in a formula F if it contains a non-empty set L
of literals such that for each clause D ∈ FL̄ \ FL, the set-resolvent C ⊗L D is a tautology.

We say that L set-blocks C in F , and we denote the set {(F,C) | C is set-blocked in F}
by SETBC. It will become clear later why we do not consider set-resolvents with all
clauses in FL̄ but only with the clauses in FL̄ \ FL. We start with a simple example:

Example 6. Consider the formula F = (x̄ ∨ y) ∧ (ȳ ∨ x) and the clause (x ∨ y). Then,
L = {x, y} trivially set-blocks (x ∨ y) in F since FL̄ \ FL is empty. Note that (x ∨ y) is
not blocked in F .

The following example is a little more involved:

Example 7. Consider the formula F = (x̄∨ y)∧ (ȳ∨x)∧ (ȳ∨ z̄)∧ (y∨ z̄) and the clause
(x ∨ y ∨ z). Then, L = {x, y} set-blocks (x ∨ y ∨ z) in F since FL̄ \ FL contains only the
clause (ȳ ∨ z̄), and the set-resolvent (x ∨ y ∨ z)⊗L (ȳ ∨ z̄) = (z ∨ z̄) is a tautology. Note
again that (x ∨ y ∨ z) is not blocked in F .

As with blocked clauses, we only need to consider the resolution neighborhood of a clause
to check if it is set-blocked. Moreover, given an assignment α that satisfies F but falsifies
C, the existence of a blocking set L guarantees that the assignment αL, obtained from α
by assigning 1 to all the literals in L, satisfies F ∧ C: By assigning 1 to the literals in L,
we could only possibly falsify clauses in FL̄. However, if a clause contains a literal of L, it
will be satisfied by αL—this is the reason why we do not need to consider set-resolvents
with clauses in FL. Now, let D ∈ FL̄ \ FL. Since the set-resolvent of C and D upon L
is a tautology, it follows that D contains a literal k such that k̄ ∈ C \ L. But, since α
falsifies C, the assignment αL must falsify all literals in C \ L and thus it must satisfy k.
Hence, αL satisfies D. If follows that αL satisfies F ∧ C and thus we get:
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Theorem 6. SETBC is a local redundancy property.

Set-blocking is also a strict generalization of blocking:

Theorem 7. Set-blocking is strictly more general than blocking, i.e., BC ⊂ SETBC.

Proof. Example 6 shows that BC 6= SETBC. It can be easily seen that BC ⊆ SETBC:
If a clause C is blocked in a formula F , then it contains a literal l such that for each
clause D ∈ Fl̄, the resolvent C ⊗lD is a tautology. Thus, for each clause D ∈ Fl̄ \Fl, the
set-resolvent C ⊗{l} D is a tautology and so C is set-blocked by {l} in F .

We next generalize set-blocked clauses to obtain super-blocked clauses. In their definition,
we refer to the external variables of a clause, which we define as the variables that occur
in the resolution neighborhood of the clause but not in the clause itself:

Definition 10. Given a formula F and a clause C, the set of external variables of C
with respect to F , denoted by extF (C), is the set var(RNF (C)) \ var(C).

We can now define super-blocked clauses:

Definition 11. A clause C is super-blocked in a formula F if, for every assignment α
over the external variables extF (C), C is set-blocked in F |α.

We write SUPBC for the set {(F,C) | C is super-blocked in F}. In the definition of
super-blocked clauses, by “every assignment α over the external variables extF (C)” we
mean all assignments whose domain is exactly the set extF (C).

Example 8. Consider again the clause C = (x∨y) from Example 5 and let again F be a
formula in which C has the resolution neighborhood RNF (C) = {(e∨y∨x̄), (ȳ∨ ē), (ȳ∨x)}.
Then, extF (C) = {e} and thus there are two assignments over the external variables:
the assignment e and the assignment ē. The resolution neighborhood of C in F |e is the
set {(ȳ), (ȳ ∨ x)}. Thus, C is set-blocked by {x} in F |e. The resolution neighborhood
of C in F | ē is the set {(y ∨ x̄), (ȳ ∨ x)}. Hence, C is set-blocked by {x, y} in F | ē (see
Example 6). It follows that C is super-blocked in F . Note also that C is not set-blocked
in F .

As with the previous redundancy properties, the idea behind super-blocked clauses is
again that from an assignment α that satisfies F but falsifies C, we can obtain a satisfying
assignment α′ of F ∧ C by flipping the truth values of certain literals of C. However, for
making sure that the flipping does not falsify any clause D in the resolution neighborhood
of C, we are now also allowed to take into account the external literals in D, which could
possibly be satisfied by α′. This is in contrast to set-blocking, where we only consider
the truth values of literals whose variables occur in C. We show next that super-blocking
coincides with semantic blocking:
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Theorem 8. A clause is super-blocked in a formula F if and only if it is semantically
blocked in F , i.e., it holds that SUPBC = SEMBC.

Proof. For the “only if” direction, let C be a clause that is super-blocked in F and let α
be a satisfying assignment of RNF (C). We have to show that there exists a set L ⊆ C of
literals such that αL satisfies RNF (C) ∪ {C}. If α satisfies C, we are done. Assume thus
that α does not satisfy C. Furthermore, let αx be obtained from α by restricting it to
the external variables extF (C). Since C is super-blocked in F , there exists a non-empty
set L ⊆ C that set-blocks C in F |αx. Now consider the assignment αL, obtained from
α by making all the literals in L true. Clearly, αL satisfies C and it agrees with αx on
var(αx) = extF (C).

It remains to show that αL satisfies RNF (C). Since αL and α differ only on L, and
since αL satisfies L, we know that αL can only possibly falsify clauses in FL̄ \ FL. Let
D ∈ FL̄ \ FL. We show that αL satisfies D. If D is satisfied by αx, then αL satisfies D
since αL agrees with αx on var(αx). Assume thus that D is not satisfied by αx. Then, D
is contained in F |αx and thus, since L set-blocks C in F |αx, the set-resolvent C⊗LD |αx

is a tautology. Thus, there exists a literal l ∈ C \ L such that l̄ ∈ D. But then, since α
falsifies C, αL must falsify l and so αL must satisfy D. We conclude that C is semantically
blocked in F .

For the “if” direction, let F be a formula and let C be a clause that is not super-blocked
in F , i.e., there exists an assignment αx over the external variables extF (C) such that
C is not set-blocked in F |αx. We show that C is not semantically blocked in F . First,
define the assignment α over the variables in RNF (C) ∪ {C} as follows:

α(x) =


1 if x̄ ∈ C,
0 if x ∈ C,
αx(x) otherwise.

Clearly, α falsifies C and, since (by definition) every clause D ∈ RNF (C) contains a
literal l̄ such that l ∈ C, it satisfies RNF (C). We show that there exists no set L ⊆ C of
literals such that αL satisfies RNF (C) ∪ {C}.

Let L ⊆ C be a set of literals. Clearly, αL agrees with αx over the external variables
extF (C), and since C is not set-blocked in F |αx, there exists a clause D ∈ F |αx such
that D ∩ L̄ 6= ∅, D ∩ L = ∅, and the set-resolvent C ⊗L D is not a tautology. Since
D ∈ F |αx, and since αL agrees with αx, we know that αL does not satisfy any of the
external variables in D. Thus, D can only possibly be satisfied by αL if it contains a
literal l such that var(l) ∈ var(C). But αL satisfies L and falsifies C \ L, and since
D ∩ L = ∅, it follows that αL could only satisfy D if D contained a literal l such that
l̄ ∈ C \ L, i.e., if the set-resolvent C ⊗L D were a tautology, which it is not. Hence, αL
falsifies D and so we can conclude that C is not semantically blocked in F .
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In Example 8, we have seen a clause that is super-blocked but not set-blocked. Since
set-blocking is a local redundancy property and since semantic blocking is the most
general local redundancy property, we conclude:

Corollary 9. Super-blocking is strictly more general than set-blocking, i.e., it holds that
SETBC ⊂ SUPBC.

2.1.4 Relationship Between Set-Blocked Clauses and Autarkies

Set-blocked clauses are closely related to so-called autarkies—a well-known concept from
the literature [MS85, KK09]. Intuitively, an autarky is an assignment that satisfies every
clause it touches (i.e., every clause in which it assigns a truth value to at least one of the
literals):

Definition 12. An assignment α is an autarky for a formula F if α satisfies every
clause C ∈ F for which var(α) ∩ var(C) 6= ∅.

Example 9. Let F = (x∨ y ∨ z̄)∧ (ȳ ∨ z ∨ u)∧ (x̄∨ ū) and let α = yz. Then, α touches
only the first two clauses. Since it also satisfies them, it is an autarky for F .

One of the crucial properties of autarkies, which follows easily from their definition, is
that they can be applied to a formula without affecting the formula’s satisfiability [KK09]:

Theorem 10. If α is an autarky for a formula F , then F and F |α are equisatisfiable.

Now, suppose a SAT solver is trying to solve a formula F and that during the solving
it obtains a partial assignment αc. If it then detects an autarky αa in the simplified
formula F |αc, we can say that αa is an autarky for F under the condition that αc is
true. Based on this observation, we generalize the autarky concept as follows:

Definition 13. An assignment αc ∪ αa (with αc ∩ αa = ∅) is a conditional autarky for
a formula F if αa is an autarky for F |αc.

We call αc the conditional part and αa the autarky part of αc ∪ αa. Observe that every
assignment is a conditional autarky with an empty autarky part. We are mainly interested
in conditional autarkies with non-empty autarky parts:

Example 10. Consider the formula F = (x̄ ∨ y) ∧ (ȳ ∨ z) ∧ (x ∨ z̄) ∧ (x̄ ∨ u) and the
assignments αc = x and αa = yz. The assignment αc ∪ αa is a conditional autarky for F
since αa is an autarky for F |αc = (y) ∧ (ȳ ∨ z) ∧ (u). Notice that αc ∪ αa is not an
autarky for F and that also αa alone is not an autarky for F .

Theorem 10 above tells us that the application of an autarky to a formula does not affect
the formula’s satisfiability. The following statement, which is a simple consequence of
Theorem 10 and the fact that αa is an autarky for F |αc, generalizes this statement for
conditional autarkies:
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Theorem 11. If αc ∪ αa is a conditional autarky (with conditional part αc and autarky
part αa) for a formula F , then F |αc and F |αc ∪ αa are equisatisfiable.

Consider now again the formula F and the conditional autarky αc ∪ αa with αc = x and
αa = yz from Example 10. Then, the clause (x̄ ∨ y ∨ z), which we obtain by taking the
negated literals of αc together with the literals of αa, is a set-blocked clause in F : Let
L = {y, z}. Then, FL̄ \FL = (x∨ z̄) and the set-resolvent (x̄∨ y ∨ z)⊗L (x∨ z̄) = (x̄∨ x)
is a tautology. This is a consequence of the following theorem, which tells us that every
conditional autarky with a non-empty autarky part corresponds to a set-blocked clause:

Theorem 12. Let F be a formula and let C = (c1 ∨ · · · ∨ cm ∨ l1 ∨ · · · ∨ ln) be a clause
where m ≥ 0 and n ≥ 1. Then, C is set-blocked by {l1, . . . , ln} in F if and only if the
assignment c̄1 . . . c̄ml1 . . . ln is a conditional autarky for F with conditional part c̄1 . . . c̄m.

Proof. For the “only if” direction, assume C is set-blocked by L = {l1, . . . , ln} in F .
We show that αa is an autarky for F |αc with αa = l1, . . . ln and αc = c̄1 . . . c̄m. Let
D |αc ∈ F |αc. Then, D is not satisfied by αc and since αc falsifies exactly the literals
of C \ L, it follows that D cannot contain the complement of a literal in C \ L. Hence,
the set-resolvent C ⊗L D is not a tautology and so D cannot be contained in FL̄ \ FL.
Since αa satisfies exactly the literals in L, this means that if D is touched by αa, it is
also satisfied by αa. But then, since αa ∩ αc = ∅, it cannot be the case that αa touches
D |αc without satisfying it. We conclude that αa is an autarky for F |αc.

For the “if” direction, assume αc∪αa is a conditional autarky for F with conditional part
αc = c̄1 . . . c̄m and autarky part αa = l1 . . . ln, and let L = {l1, . . . , ln}. We show that for
every clause D ∈ FL̄ \ FL, the set-resolvent C ⊗L D is a tautology. Let D ∈ FL̄ \ FL.
Then, since αa falsifies exactly the literals of L, the clause D is touched but not satisfied
by αa. Hence, αc must satisfy a literal l of D, for otherwise αc ∪ αa would not be a
conditional autarky. Moreover, since αc assigns no literals of L̄, it must actually be the
case that l ∈ D \ L̄. But then, since αc falsifies only literals of C, it follows that l̄ ∈ C
and so C ⊗L D is a tautology. We conclude that C is set-blocked by L in F .

Searching for set-blocked clauses is therefore nothing else than searching for conditional
autarkies.

2.1.5 Complexity of Deciding Set-Blockedness and Super-Blockedness

We next analyze the complexity of testing if a clause is set-blocked or super-blocked. We
also consider restricted variants of set-blocking and super-blocking, which gives rise to a
whole family of blocking notions. Note that all complexity results are with respect to
the size of a clause and its resolution neighborhood. This means that even if deciding
set-blockedness and super-blockedness is hard in general, it can be easy as long as a
clause has a small resolution neighborhood within a formula—no matter how large the
formula.
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Definition 14. The set-blocking problem is the following decision problem: Given a
pair (F,C) where F is a formula and C is a clause such that every clause D ∈ F contains
a literal l̄ with l ∈ C, decide if C is set-blocked in F .

Theorem 13. The set-blocking problem is NP-complete.

Proof. We first show NP-membership, followed by NP-hardness.

NP-membership: Given a non-empty set L ⊆ C, it can be checked in polynomial time if
for every clause D ∈ FL̄ \ FL, the set-resolvent C ⊗L D is a tautology. The following is
thus an NP-procedure for the set-blocking problem: Guess a non-empty set L ⊆ C and
check if it blocks C in F .

NP-hardness: We give a reduction from the satisfiability problem of propositional logic
by defining the following reduction function on the input formula F with var(F ) =
{x1, . . . , xn} (we assume without loss of generality that F is in CNF):

f(F ) = (G,C), with C = (u ∨ x1 ∨ x′1 ∨ · · · ∨ xn ∨ x′n),

where and u, x′1, . . . , x
′
n are new variables that do not occur in F . Furthermore, the

formula G is obtained from F by

• replacing every clause C ′ ∈ F by a clause t(C ′), obtained from C ′ by adding the
literal ū and replacing every negative literal x̄i by the positive literal x′i, and

• adding the clauses (x̄i ∨ x̄′i), (x̄i ∨ u), (x̄′i ∨ u) for every xi ∈ var(F ).

The intuition behind the construction of G and C is as follows. By including u in C
and adding ū to every t(C ′) with C ′ ∈ F , we guarantee that all clauses in G are in the
resolution neighborhood of C, i.e., they contain a literal l with l̄ ∈ C. This makes (G,C)
a valid instance of the set-blocking problem. The main idea, however, is that every set L
that set-blocks C in G corresponds to a satisfying assignment of the original formula F .
We show that F is satisfiable if and only if C is set-blocked in G.

For the “only if” direction, suppose there exists a satisfying assignment α of F and let
L = {u} ∪ {xi | α(xi) = 1} ∪ {x′i | α(xi) = 0}. Clearly, L ⊆ C. It remains to show that
for every clause D ∈ GL̄ \GL, the set-resolvent C ⊗L D is a tautology. We proceed by a
case distinction.

Case 1: D is of the form (x̄i ∨ u) or (x̄′i ∨ u). Then, D /∈ GL̄ \GL since u ∈ L.

Case 2: D is of the form (x̄i ∨ x̄′i). By the definition of L, only one of xi and x′i is in L.
Assume without loss of generality that xi ∈ L. Then, x′i ∈ C \ L and since x̄′i ∈ D, the
set-resolvent C ⊗L D is a tautology.

Case 3: D is of the form t(C ′) for C ′ ∈ F . Since α satisfies F , it must satisfy a literal
l ∈ C ′. If l is positive, i.e., l = xi for xi ∈ var(F ), then (by the construction of t(C ′) = D)
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xi is contained in D and (by the definition of L) xi is also contained in L. If l is negative,
i.e., l = x̄i for xi ∈ var(F ), then x′i is contained in both D and L. In both cases, L
contains a literal of D and thus D /∈ GL̄ \GL.

We conclude that L set-blocks C in G.

For the “if” direction, suppose C is set-blocked by some set L in G, and define α over
var(F ) as follows:

α(xi) =
{

1 if xi ∈ L,
0 otherwise.

We show that α satisfies F . First, observe that u must be contained in L: Assume to the
contrary that u /∈ L. Then, since L must be non-empty, some xi or x′i must be contained
in L. If xi ∈ L, then GL̄ \GL contains the clause D = (x̄i ∨ u) and so the set-resolvent
C ⊗L D must be a tautology. But this cannot be the case since ū /∈ C. The argument
for x′i ∈ L is analogous.

Now, let C ′ ∈ F and let D = t(C ′). Then, since u ∈ L and ū ∈ D, it must be the case
that either D ∈ GL or the set-resolvent C ⊗L D is a tautology. But, C contains only
positive literals, which is (apart from ū) also the case for D. Hence, C ⊗LD cannot be a
tautology and so D must contain a literal l ∈ L. Now, if l = xi for xi ∈ var(F ), then
xi ∈ C ′ and α(xi) = 1. If l = x′i for xi ∈ var(F ), then x̄i ∈ C ′ and α(xi) = 0. In both
cases, α satisfies C ′. It follows that α satisfies F .

We next analyze the complexity of deciding if a clause is super-blocked. To do so, we
define the following problem:

Definition 15. The super-blocking problem is the following decision problem: Given
a pair (F,C) where F is a formula and C is a clause such that every clause D ∈ F
contains a literal l̄ with l ∈ C, decide if C is super-blocked in F .

Below, we show that the super-blocking problem is ΠP
2 -hard by providing a reduction

from the ∀∃-SAT problem. The ∀∃-SAT problem takes as input a quantified Boolean
formula of the form ∀X∃Y.F where X and Y are sets of variables and F is a propositional
formula. It then asks: Is it the case that for every assignment αX over the variables in X,
there exists an assignment αY over the variables in Y such that αX ∪αY satisfies F? We
will take a closer look at quantified Boolean formulas later on in Chapter 6.

Theorem 14. The super-blocking problem is ΠP
2 -complete.

Proof. We show ΠP
2 -membership followed by ΠP

2 -hardness.

ΠP
2 -membership: The following is a ΣP

2 -procedure for deciding if C is not super-blocked
in F : Guess an assignment α over the external variables extF (C) and ask an NP-oracle if
C is set-blocked in F |α. If the oracle answers no, then return yes, otherwise return no.
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ΠP
2 -hardness: We give a reduction from ∀∃-SAT to the super-blocking problem. The

reduction is similar to the one used for proving Theorem 13. The difference is that here
we encode only the existentially quantified variables of the ∀∃-formula into C, which
makes all the universally quantified variables external. Let φ = ∀X∃Y.F be an instance
of ∀∃-SAT with X = {x1, . . . , xm} and Y = {y1, . . . , yn}, and assume without loss of
generality that F is in CNF. We define the reduction function

f(φ) = (G,C), with C = (u ∨ y1 ∨ y′1 ∨ · · · ∨ yn ∨ y′n),

where u, y′1, . . . , y′n are new variables not occurring in φ. Furthermore, G is obtained
from F by

• replacing every clause C ′ ∈ F by a clause t(C ′) which is obtained from C ′ by adding
the literal ū and replacing every negative literal ȳi (where yi ∈ Y ) by the positive
literal y′i; and by

• adding the clauses (ȳi ∨ ȳ′i), (ȳi ∨ u), (ȳ′i ∨ u) for every yi ∈ Y .

By construction, every clause D ∈ G contains a literal l̄ with l ∈ C, hence (G,C) is
a valid instance of the super-blocking problem. The intuition behind the reduction is
that blocking sets correspond to assignments over the existential variables of φ while
the assignments over the external variables, extG(C), correspond to the assignments
over the universally quantified variables of φ. We show that φ is true if and only if C is
super-blocked in G.

For the “only-if” direction, assume that φ is true and let αX be an assignment over the
external variables extG(C) of C in G. We show that C is set-blocked in G |αX . Since
φ is true and since extG(C) = X, there exists an assignment αY to the variables in Y
such that αX ∪ αY satisfies F . Now, let L = {u} ∪ {yi | αY (yi) = 1} ∪ {y′i | αY (yi) = 0}.
We show that for every clause D ∈ G |αX such that D ∩ L̄ 6= ∅ and D ∩ L = ∅, the
set-resolvent C ⊗L D is a tautology. We proceed by a case distinction over the types of
clauses in G |αX :

Case 1: D is of the form (ȳi ∨ u) or ȳ′i ∨ u. Then, D contains u and so D ∩ L 6= ∅.

Case 2: D is of the form (ȳi ∨ ȳ′i). By definition, L contains at most one of yi, y′i. Assume
without loss of generality that yi ∈ L. Then, y′i ∈ C \L and thus the set-resolvent C⊗LD
is a tautology containing both y′i and ȳ′i. The case when y′i ∈ L is analogous.

Case 3: D is of the form t(C ′) for C ′ ∈ F . Since D is not satisfied by αX , it must be
satisfied by αY and thus αY satisfies a literal of C ′ that is either of the form yi or of the
form ȳi. In the former case, yi ∈ L and in the latter case y′i ∈ L. Hence, in both cases,
D ∩ L 6= ∅.

We conclude that C is super-blocked in G.

For the “if” direction, suppose C is super-blocked in G and let αX be an assignment over
the variables in X = extG(C). We show that there exists an assignment αY over Y such
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that αX ∪ αY satisfies F . Since C is super-blocked in G, there exists a non-empty set L
that set-blocks C in G |αX . We define the assignment αY as follows:

αY =
{

1 if yi ∈ L,
0 otherwise.

It remains to show that αX ∪ αY satisfies F . First, observe that u must be contained
in L: Assume to the contrary that u /∈ L. Then, since L must be non-empty, some yi
or y′i must be contained in L. If yi ∈ L, then the set-resolvent C ⊗L D with the clause
D = (ȳi ∨ u), which is contained in G |αX , must be a tautology. But this cannot be the
case since ū /∈ C. The argument for y′i ∈ L is analogous.

Second, observe that L cannot contain both yi and y′i since in that case the set-resolvent
of C with the clause (ȳi ∨ ȳ′i) upon L cannot contain two complementary literals (both ȳi
and ȳ′i are not contained in the set-resolvent). Hence, if y′i ∈ L, then αY (yi) = 0.

Now, let C ′ ∈ F be a clause that is not satisfied by αX . Then, G contains the clause
D = t(C ′). Since u ∈ L and since every clause t(C ′) ∈ G contains the literal ū, it must
be the case that either D contains a literal l ∈ L or the set-resolvent C ⊗L D |αX is a
tautology. But this set-resolvent cannot be a tautology since both C and D |α contain
(apart from u) only positive literals of the form yi or y′i. It follows that D contains a
literal l ∈ L. Now, l is either of the form yi or of the form y′i. In the former case yi ∈ C ′
is satisfied by αY . In the latter case, ȳi ∈ C ′ is satisfied by αY . Thus, αY satisfies all
clauses of F that are not satisfied by αX . We conclude that φ is true.

We have already seen that the set-blocking problem is NP-complete in the general case.
However, we obtain a restricted variant of set-blocking by only allowing blocking sets
whose size is bounded by a constant. Then, the resulting problem of testing if a clause
C is blocked by some non-empty set L ⊆ C whose size is at most k (for k ∈ N+) turns
out to be polynomial: For a finite set C and k ∈ N+, there are only polynomially many
non-empty subsets L ⊆ C with |L| ≤ k. To see this, let n = |C| and observe (by basic
combinatorics) that the exact number of such subsets is given by the following sum which
reduces to a polynomial with degree at most k:

k∑
i=1

(
n

i

)
.

Hence, the number of non-empty subsets L ⊆ C with |L| ≤ k is polynomial in the size
of C. This line of argumentation is actually very common. For the sake of illustration,
however, we provide the following example:

Example 11. Let |C| = n and k = 3 (with k ≤ n). Then, the number of non-empty
subsets L ⊆ C with |L| ≤ k is given by the polynomial

3∑
i=1

(
n

i

)
= n(n− 1)(n− 2)

6 + n(n− 1)
2 + n = 1

6n
3 + 5

6n.
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As there are only polynomially many potential blocking sets and since we can easily
check in polynomial time if a given set L set-blocks C in F , we can check in polynomial
time if for some clause C there exists a blocking set L of size at most k.

Since the definition of super-blocking is based on the definition of set-blocking, we can
also consider the complexity of restricted variants of super-blocking where again the
size of the according blocking sets is bounded by a constant. We thus define an infinite
number of decision problems (one for every k ∈ N+) as follows:

Definition 16. For any k ∈ N+, the k-super-blocking problem is the following decision
problem: Given a pair (F,C) where F is a formula and C is a clause such that every
clause D ∈ F contains a literal l̄ with l ∈ C, decide if for every assignment α over
the external variables extF (C), there exists a non-empty set L ⊆ C with |L| ≤ k that
set-blocks C in F |α.

Theorem 15. The k-super-blocking problem is in co-NP for all k ∈ N+.

Proof. Consider the statement that has to be tested for the complement of the k-super-
blocking problem:

There exists an assignment α over the external variables extF (C) such that
no non-empty subset L of C with |L| ≤ k set-blocks C in F |α.

Since we can easily check in polynomial time if a given set L ⊆ C set-blocks C in F |α,
the following is an NP-procedure for this complementary problem:

Guess an assignment α over the external variables extF (C) and check for
every non-empty subset L of C (with |L| ≤ k) if it set-blocks C in F |α. If
there is such a set, return no, otherwise return yes.

Hence, for every k ∈ N+, the k-super-blocking problem is in co-NP.

We can show co-NP-hardness of the k-super-blocking problem already for k = 1:

Theorem 16. The 1-super-blocking problem is co-NP-hard.

Proof. We show the result by providing a reduction from the unsatisfiability problem of
propositional logic. Let F = C1 ∧ · · · ∧ Cn be a propositional formula in CNF and define
the reduction function

f(F ) = (G,C), with C = (u1 ∨ · · · ∨ un),
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where u1, . . . , un are new variables that do not occur in F , and

G =
n∧
i=1

Fi where Fi =
∧
l∈Ci

(ūi ∨ l̄).

Clearly, (G,C) is a valid instance of the 1-super-blocking problem and var(F ) = extG(C).
We show that F is unsatisfiable if and only if, for every assignment α over the external
variables extG(C), there exists a literal ui ∈ C such that {ui} set-blocks C in G |α.

For the “only if” direction, assume that F is unsatisfiable and let α be an assignment
over extG(C). Since var(F ) = extG(C), there exists a clause Ci in F that is falsified
by α. But then, since every clause in Fi contains a literal l̄ with l ∈ Ci, it follows that Fi
is satisfied by α. Hence, as ūi only occurs in Fi, {ui} trivially set-blocks C in G |α.

For the “if” direction, assume that for every α over extG(C), there exists a literal ui ∈ C
such that {ui} set-blocks C in G |α. Now, let α be an assignment over var(F ) = extG(C).
Since no clause in G contains a literal l such that l̄ ∈ C \ {ui}, none of the set-resolvents
of C upon {ui} with clauses in G |α can be tautologies. Hence, α must satisfy every
clause (ūi ∨ l̄) ∈ G and thus it must falsify every literal l ∈ Ci. It follows that every
assignment over var(F ) must falsify a clause in F and thus F is unsatisfiable.

The above reduction actually works for all k-super-blocking-problems with k ∈ N+. To
see this, observe that for every k ∈ N+, C is k-super-blocked in G if and only if it is
1-super-blocked in G: If a clause is 1-super-blocked in a formula, then it is by definition
also k-super-blocked for all k ∈ N+. Conversely, due to the way G is constructed, if a set
L ⊆ C set-blocks C in G |α (with α being an arbitrary assignment over extG(C)), then
there exists a singleton set L′ ⊆ L that set-blocks C in G |α and thus C is 1-super-blocked
in G. We thus get:

Corollary 17. The k-super-blocking problem is co-NP-complete for all k ∈ N+.

The notions of set-blocking and super-blocking, together with the corresponding restric-
tions discussed in this section, give rise to a whole family of blocking notions which differ
in both generality and complexity. We conclude the following:

1. Taking the assignments over external variables into account (as is the case for
super-blocking) leads to co-NP-hardness.

2. If blocking sets of arbitrary size are considered, the (sub-)problem of checking if
there exists a blocking set is NP-hard.

3. If the size of blocking sets is bounded by a constant k, the (sub-)problem of testing
if there exists a blocking set turns out to be polynomial.

4. The problem of testing if a clause is super-blocked in the most general sense, where
the size of blocking sets is not bounded by a constant, is ΠP

2 -complete.
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Hence, we can summarize the following complexity results:

|L| is unrestricted |L| ≤ k for k ∈ N+

Super-Blocking ΠP
2 -complete co-NP-complete

Set-Blocking NP-complete P

Note that the cardinality |L| of blocking sets is of course bounded by the length of
the clauses, thus we can restrict |L| ≤ |C|. This is particularly interesting for formula
instances with (uniform) constant or maximal clause length.

After having seen different notions of locally redundant clauses, we now drop the restriction
of locality and consider redundancy properties that can require us to consider a whole
formula instead of only the resolution neighborhood of a clause.

2.2 Globally Redundant Clauses

In the following, we first review some global redundancy properties from the literature.
After this, we come up with a characterization of clause redundancy that is based on a
semantic implication relationship between formulas. By replacing the implication relation
in this characterization with restricted notions of implication that are computable in
polynomial time, we then obtain powerful global redundancy properties that are still
efficiently decidable. These redundancy properties not only generalize existing ones such
as resolution asymmetric tautologies [JHB12] or set-blocked clauses but they are also
closely related to other concepts from the literature, including autarkies [MS85], safe
assignments [WFS06], and variable instantiation [ABCH02].

2.2.1 Globally Redundant Clauses From the Literature

We start by considering a redundancy property from the literature that plays an important
role in practical SAT solving—the redundancy property RUP (short for reverse unit
propagation) [VG12b]. To do so, we require the notion of unit propagation, which will
play an important role throughout the following chapters.

Unit propagation is based on the repeated application of the unit-clause rule: Given a
formula F that contains a unit clause (x), the result of applying the unit-clause rule
to F is the formula F |x. We also refer to applications of the unit-clause rule as unit-
propagation steps. Unit propagation is then the iterated application of the unit-clause
rule to a formula until no unit clauses are left. If unit propagation on F yields the
empty clause ⊥, we say that it derives a conflict on F . Note that this definition of unit
propagation is non-deterministic in the sense that we are free to choose which unit clause
we pick for a single application of the unit-clause rule. It is, however, well-known that
the choice of unit clauses does not affect whether unit propagation derives a conflict. In
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other words, if unit propagation derives a conflict, it does so independently of the order
in which we apply the unit-propagation steps.

Example 12. Consider the formula F = (x̄∨ y)∧ (ȳ)∧ (x). As F contains the two unit
clauses (ȳ) and (x), we can apply the unit-clause rule with either of them. Say we first
choose (x), then we obtain F |x = (y)∧ (ȳ). Next, we can choose either (y) or (ȳ). In any
case, we obtain F |xy = F |xȳ = ⊥ and thus unit propagation derives a conflict on F .

Clearly, if unit propagation derives a conflict on a formula, then that formula is
unsatisfiable, but the converse does not hold. A simple example of an unsatisfi-
able formula on which unit propagation does not derive a conflict is the formula
(x ∨ y) ∧ (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ ȳ).

The concepts of unsatisfiability and implication are closely related: A formula F implies
a clause (l1∨ · · · ∨ lk) if and only if the formula F ∧ (l̄1)∧ · · · ∧ (l̄k) is unsatisfiable. As the
satisfiability problem of propositional logic is NP-complete, the problem of deciding if a
clause is implied by a formula is co-NP-complete. However, an efficiently decidable notion
of implication can be obtained by requiring that unit propagation (which can be performed
in polynomial time) must derive a conflict on F ∧ (l̄1) ∧ · · · ∧ (l̄k). This leads to the
redundancy property RUP, which can be seen as a restricted form of implication [VG12b]:

Definition 17. A clause (l1 ∨ · · · ∨ lk) is a RUP in a formula F if unit propagation
derives a conflict on F ∧ (l̄1) ∧ · · · ∧ (l̄k).

We overload notation by denoting the set {(F,C) | C is a RUP in F} by RUP. If C is a
RUP in F , we write F `1 C and we say that F implies C via unit propagation. We also
say that a formula F implies a formula G via unit propagation, denoted by F `1 G, if
F `1 D holds for each clause D ∈ G.

Example 13. The formula (x̄∨z)∧ (ȳ∨ z̄) implies the clause (x̄∨ ȳ) via unit propagation
since unit propagation derives a conflict on (x̄ ∨ z) ∧ (ȳ ∨ z̄) ∧ (x) ∧ (y).

Observe that if C is a resolvent of two clauses in a formula F , or if C is subsumed in F ,
then C is a RUP in F . Moreover, if C is a RUP in F , then F implies C. Clearly, RUP
clauses are redundant [VG12b]:

Theorem 18. RUP is a redundancy property.

The RUP redundancy property is non-local since it can take the whole formula into account
when checking if unit propagation derives a conflict. An alternative characterization
of RUPs are so-called asymmetric tautologies, whose definition is based on asymmetric
literals [HJB10a]:

Definition 18. A literal l is an asymmetric literal with respect to a clause C in a formula
F if there exists a clause D ∨ l̄ ∈ F such that D ⊆ C.

30



2.2. Globally Redundant Clauses

An asymmetric tautology is then a clause that can be turned into a tautology by repeatedly
adding asymmetric literals [HJB10a]:

Definition 19. A clause C is an asymmetric tautology in a formula F if there exists a
sequence l1, . . . , ln of literals such that C ∨ l1 ∨ · · · ∨ ln is a tautology and each li is an
asymmetric literal with respect to C ∨ l1 ∨ · · · ∨ li−1 in F .

Example 14. Consider again the formula F = (x̄ ∨ z) ∧ (ȳ ∨ z̄) and the clause (x̄ ∨ ȳ)
from Example 13. The literal z̄ is an asymmetric literal with respect to (x̄ ∨ ȳ) in F
since (x̄) ⊆ (x̄ ∨ ȳ). We thus add it to (x̄ ∨ ȳ) to obtain (x̄ ∨ ȳ ∨ z̄). The literal z is an
asymmetric literal with respect to (x̄ ∨ ȳ ∨ z̄) since (ȳ) ⊆ (x̄ ∨ ȳ ∨ z̄). After adding z to
(x̄ ∨ ȳ ∨ z̄) we obtain the tautology (x̄ ∨ ȳ ∨ z̄ ∨ z) and thus (x̄ ∨ ȳ) is an asymmetric
tautology in F .

Although we are not aware of a publication where this is proved explicitly, it is well-known
that RUPs and asymmetric tautologies coincide. Formally, this can be shown by an easy
induction argument. Intuitively, asymmetric-literal additions correspond to applications
of the unit-clause rule, and the presence of two complementary literals in an asymmetric
tautology corresponds to the derivation of a conflict during unit propagation:

Theorem 19. A clause is an asymmetric tautology in a formula F if and only if it is a
RUP in F .

It follows that asymmetric tautologies are redundant. We denote the redundancy property
{(F,C) | C is an asymmetric tautology in F} by AT.

Clearly, every tautology is an asymmetric tautology, but by adding asymmetric literals,
we can even turn non-tautological clauses into tautologies. Asymmetric tautologies are
thus a generalization of ordinary tautologies. Now, remember that a blocked clause
is a clause for which all resolvents upon one of its literals are tautologies. By slightly
modifying this definition, replacing tautologies by asymmetric tautologies, we arrive at
the notion of a resolution asymmetric tautology, better known as RAT [JHB12]:

Definition 20. A clause C is a resolution asymmetric tautology (RAT) in a formula
F if it contains a literal l such that for every clause D ∈ Fl̄, the resolvent C ⊗l D is an
asymmetric tautology in F .

We say that C is a RAT on l in F . Again, we overload notation, referring to the set
{(F,C) | C is a resolution asymmetric tautology in F} by RAT. Since every tautology
is an asymmetric tautology, but not vice versa, the RAT redundancy property is a strict
generalization of blocked clauses.

Example 15. Consider the formula F = (x̄ ∨ ȳ) ∧ (x̄ ∨ z) ∧ (z ∨ u) ∧ (ū ∨ y) and the
clause (x∨ y). There are two resolvents of (x∨ y) upon x: The resolvent (y∨ ȳ), obtained
by resolving with (x̄ ∨ ȳ), is a tautology in F ; the resolvent (y ∨ z), obtained by resolving
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with (x̄ ∨ z) is not a tautology, but it is an asymmetric tautology in F : Using the clause
(z ∨ u), we can add the asymmetric literal ū to (y ∨ z). After this, we can use the clause
(ū ∨ y) to add the asymmetric literal u to obtain the tautology (y ∨ z ∨ ū ∨ u). It follows
that (x ∨ y) is a RAT on x in F . Note that (x ∨ y) is not blocked in F .

It can be shown that if a clause C is a RAT in a formula F , then C is redundant with
respect to F , which means that RAT is a redundancy property [JHB12]. The main
idea behind the redundancy of RATs is similar to the idea behind the redundancy of
blocked clauses: If a clause C is a RAT on a literal l in a formula F , then every satisfying
assignment of F that falsifies C can be turned into a satisfying assignment of F ∧ C by
flipping the truth value of l. The condition that all resolvents of C upon l are asymmetric
tautologies guarantees that this does not affect the truth of clauses in F .

The RAT redundancy property not only generalizes blocked clauses but also several
other redundancy properties from the literature [JHB12]. Moreover, by adding and
removing RATs, it is possible to simulate most of the reasoning techniques employed by
state-of-the-art SAT solvers. Because of this, RAT provides the basis for the well-known
DRAT proof system [WHHJ14], which is the de facto standard for unsatisfiability proofs
in practical SAT solving (for a formal definition of DRAT, see page 48). Participants in
the annual SAT competition, where the best SAT solvers compete against each other,
are required to produce DRAT proofs [BHJ17]. Also, recent proofs of open mathematical
problems, including the Erdős Discrepancy Conjecture [KL15] and the Pythagorean
Triples Problem [HKM16], were provided in DRAT.

Since asymmetric tautologies and RUPs coincide, we get the following alternative charac-
terization of RATs, which is sometimes used in the literature as the RAT definition:

Theorem 20. A clause C is a RAT in a formula F if and only if it contains a literal l
such that for every clause D ∈ Fl̄, the resolvent C ⊗l D is a RUP in F .

We have now seen two different approaches to generalizing blocked clauses: On the one
hand, we have set-blocked clauses and super-blocked clauses. They generalize blocked
clauses by allowing us to modify the truth values of multiple literals when showing that
they are redundant. On the other hand, we have RATs, which—like blocked clauses—only
allow us to modify the truth value of a single literal. However, unlike set-blocked clauses
and super-blocked clauses, RATs go beyond the resolution neighborhood of clauses when
it comes to showing their redundancy. It turns out that the redundancy properties of
both set-blocked clauses and super-blocked clauses are incomparable with RAT. This
means that there are clauses that are set-blocked (or super-blocked) with respect to
certain formulas while they are not RATs, and vice versa.

Theorem 21. RAT 6⊆ SETBC.

Proof. Consider the formula F = (x̄∨ y)∧ (ȳ ∨ x) and the clause (x∨ y) from Example 6.
The set L = {x, y} trivially set-blocks (x ∨ y) in F since FL̄ \ FL is empty. However,
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(x ∨ y) is not a RAT on x in F since the resolvent (y), obtained by resolving (x ∨ y) with
(x̄ ∨ y) upon x, is not a RUP in F . Moreover, (x ∨ y) is also not a RAT on y since the
resolvent (x), obtained by resolving (x ∨ y) with (ȳ ∨ x) upon y, is not a RUP in F .

Theorem 22. SUPBC 6⊆ RAT.

Proof. Consider the formula F = (x̄ ∨ e) ∧ (ȳ ∨ e) ∧ (z̄ ∨ e) ∧ (x ∨ y) and the clause
C = (x ∨ y ∨ z). It is easy to see that C is a RAT on z in F : There exists only one
resolvent of C upon z, namely the clause (x ∨ y ∨ e), obtained by resolving with (z̄ ∨ e).
This resolvent is a RUP in F since F contains the clause (x ∨ y), and unit propagation
derives a conflict on (x ∨ y) ∧ (x̄) ∧ (ȳ) ∧ (ē).

It remains to show that C is not super-blocked in F . To do so, we show that for
the assignment ē over the external variables extF (C) = {e}, C is not set-blocked in
F | ē = (x̄) ∧ (ȳ) ∧ (z̄) ∧ (x ∨ y). Assume to the contrary that C is set-blocked in F | ē.
This means that there exists a non-empty set L ⊆ C of literals such that for every clause
D ∈ F | ē with D∩ L̄ 6= ∅ and D∩L = ∅, the set-resolvent C⊗LD is a tautology. Since L
is non-empty, L must contain at least one of the literals x, y, and z. Assume without loss
of generality that x ∈ L. Then, the only literals that can be contained in the set-resolvent
C ⊗L (x̄) are y and z, implying that C ⊗L (x̄) cannot be a tautology. The cases where
y ∈ L or z ∈ L are analogous. It follows that C is not set-blocked in F | ē and thus C is
not super-blocked in F .

Note that the proof actually shows a stronger result, namely that SUPBC 6⊆ RS, where
RS = {(F,C) | all resolvents of C upon one of its literals are subsumed in F} [JHB12],
which is a strict subset of RAT.

Since every set-blocked clause is a super-blocked clause, Theorem 22 allows us to conclude:

Corollary 23. RAT is incomparable with both set-blocked clauses (SETBC) and super-
blocked clauses (SUPBC).

In the following, we introduce redundancy properties that generalize both set-blocked
clauses and RATs. As our complexity analysis in Section 2.1.5 has revealed that deciding
super-blockedness is extremely hard, we do not introduce any generalizations of super-
blocked clauses.

2.2.2 Characterizing Clause Redundancy via Implication

We want to combine the ideas behind both set-blocked clauses and RATs to obtain even
stronger redundancy properties. To achieve this, we introduce a characterization of
clause redundancy that reduces the question if a clause is redundant to a question of
implication between two formulas. The advantage of this is that we can then replace
the ordinary implication relation in this characterization by polynomially decidable
implication relations to derive powerful redundancy properties that are still efficiently
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checkable. We use these redundancy properties later to obtain highly expressive clausal
proof systems.

Our characterization is based on the observation that a clause can be seen as a constraint
that rules out those assignments that falsify the clause. For instance, if a formula contains
the clause (x∨ ȳ), then the formula cannot be satisfied by any assignment that falsifies x
and satisfies y. We thus say that (x ∨ ȳ) precludes the assignment x̄y. More generally:

Definition 21. Given an assignment α = a1 . . . ak, the clause (ā1∨· · ·∨ āk) is the clause
that precludes α.

Intuitively, a clause is redundant with respect to a formula if its addition does not
constrain the formula too much. What we mean by this is that after adding the clause,
there should still exist other assignments (i.e., assignments not precluded by the clause)
under which the formula is at least as satisfiable as under the assignments precluded by
the clause. But when is a formula at least as satisfiable as another formula? We say that
a formula F is at least as satisfiable as a formula G if every satisfying assignment of F is
also a satisfying assignment of G, i.e., if F |= G. Consider the following example:

Example 16. Consider the formula F = (x ∨ y) ∧ (x ∨ z) ∧ (x̄ ∨ y ∨ z) and the unit
clause (x). Although the addition of (x) to F precludes the assignment α = x̄, there still
exists another assignment under which F is at least as satisfiable as under α, namely
the assignment ω = x: Observe that F |α = (y) ∧ (z) while F |ω = (y ∨ z), and so every
satisfying assignment of F |α is also a satisfying assignment of F |ω, that is, F |α |= F |ω.
Thus, F is at least as satisfiable under ω as it is under α. Moreover, ω satisfies (x). The
addition of (x) does therefore not affect the satisfiability of F .

This motivates our new characterization of clause redundancy presented next. Note that
the assignment α precluded by a given clause C is in general a partial assignment and
thus C eliminates all assignments that extend α from the search space:

Theorem 24. Let F be a formula, C a non-empty clause, and α the assignment precluded
by C. Then, C is redundant with respect to F if and only if there exists an assignment ω
such that ω satisfies C and F |α |= F |ω.

Proof. For the “only if” direction, assume that C is redundant with respect to F , meaning
that F and F ∧ C are equisatisfiable. If F |α is unsatisfiable, then F |α |= F |ω for every
assignment ω, hence the statement trivially holds. Assume now that F |α is satisfiable,
implying that F is satisfiable. Then, since F and F ∧ C are equisatisfiable, there exists
an assignment ω that satisfies both F and C. Hence, since ω satisfies F , it holds that
F |ω = ∅ and so F |α |= F |ω.

For the “if” direction, suppose there exists an assignment ω such that ω satisfies C and
F |α |= F |ω. Now, let γ be a (total) assignment that satisfies F and falsifies C. We
show how γ can be turned into a satisfying assignment γ′ of F ∧ C. As γ falsifies C, it
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agrees with α on var(α). Therefore, since γ satisfies F , it must satisfy F |α and since
F |α |= F |ω it must also satisfy F |ω. We now define the following assignment which
satisfies F ∧ C:

γ′(x) =
{
ω(x) if x ∈ var(ω),
γ(x) otherwise.

Clearly, since ω satisfies C, γ′ also satisfies C. Moreover, as γ satisfies F |ω, and since
var(F |ω) ⊆ var(γ) \ var(ω), γ′ satisfies F . We conclude that γ′ satisfies F ∧ C.

This alternative characterization of clause redundancy allows us to replace the logical
implication relation by restricted implication relations that are polynomially decidable.
We can, for instance, replace the condition F |α |= F |ω by the restricted condition
F |α `1 F |ω (implication via unit propagation, as defined on page 30). Likewise, we
could also replace “ |=” by relations such as “⊇”, “=”, or the relation “`0”, where F `0 G
denotes that every clause of G is subsumed in F .

As an example, consider blocked clauses: If C is a clause that is blocked by a literal
l in a formula F and if α is the assignment precluded by C, then one can show that
F |α ⊇ F |αl (see proof of Theorem 28 on page 39 for details).

Now, if we are given a clause C—which implicitly gives us the precluded assignment
α—and a witnessing assignment ω, we can check in polynomial time if F |α `1 F |ω.
This gives rise to propagation-redundant clauses, which we introduce next.

2.2.3 Propagation-Redundant Clauses

In the following, we use the propagation-implication relation “`1” to define the redun-
dancy properties of

• literal-propagation redundancy (LPR),

• set-propagation redundancy (SPR),

• propagation redundancy (PR).

Basically, the three notions differ in the way we allow the witnessing assignment ω to
differ from the assignment α precluded by a clause. The more freedom we give to ω,
the more general the redundancy property we obtain. We show that literal-propagation-
redundant clauses—the least general of the three—coincide with RAT. For the more
general set-propagation-redundant clauses, we show that they not only generalize RAT
but also set-blocked clauses (SETBC), which is not the case for literal-propagation-
redundant clauses. Finally, propagation-redundant clauses are even more general than
set-propagation-redundant clauses. They give rise to an extremely powerful proof system.
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Figure 2.2: Landscape of redundancy properties. A path from a redundancy property X
to a redundancy property Y indicates that X is more general than Y.

With these three notions, we obtain the landscape of redundancy properties illustrated
in Figure 2.2. In the figure, S stands for the set {(F,C) | C is subsumed in F}, IMP for
{(F,C) | F |= C}, and RED for {(F,C) | C is redundant with respect to F}.

As we will see, when defining proof systems based on literal-propagation-redundant
clauses (for example, the DRAT proof system) or set-propagation-redundant clauses, we
do not need to explicitly add the redundancy witnesses (i.e., the witnessing assignments ω)
to a proof. Thus, proofs in the respective proof systems can just be seen as sequences
of clauses. In particular, a proof system based on set-propagation-redundant clauses
can have the same syntax as DRAT proofs, which makes it “downwards compatible”
with DRAT. This is in contrast to proof systems based on propagation-redundant
clauses, where in general witnessing assignments have to be added to a proof; otherwise
redundancy of a clause cannot be checked in polynomial time. We start by introducing
literal-propagation-redundant clauses:

Definition 22. Let F be a formula, C a clause, and α the assignment precluded by C.
Then, C is literal-propagation redundant (LPR) with respect to F if there exists a literal
l ∈ C such that F |α `1 F |αl.

We denote the set {(F,C) | C is literal-propagation redundant with respect to F} by
LPR. It is a straightforward consequence of Theorem 24 that LPR is a redundancy
property.
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Example 17. Let F = (x∨y)∧(x∨ ȳ∨z)∧(x̄∨z) and let C be the unit clause (x). Then,
α = x̄ is the assignment precluded by C, and αx = x. Now, consider F |α = (y) ∧ (ȳ ∨ z)
and F |αx = (z). Clearly, F |α `1 F |αx and therefore C is literal-propagation redundant
with respect to F .

The LPR definition is quite restrictive since it requires the witnessing assignment αl to
disagree with α on exactly one variable. Nevertheless, this already suffices for LPR to
coincide with RAT:

Theorem 25. A clause C is literal-propagation redundant with respect to a formula F
if and only if it is a RAT in F .

Proof. For the “only if” direction, assume that C is literal-propagation redundant with
respect to F and let α be the assignment precluded by C. Then, C contains a literal
l such that F |α `1 F |αl. Now, let D ∈ Fl̄. We show that F implies the resolvent
C ⊗l D via unit propagation, i.e., F `1 C ⊗l D. Since F |α `1 F |αl, either D |αl = > or
F |α `1 D |αl. In case D |αl = >, the clause D \ {l̄} must contain a literal d̄ such that
d ∈ C \ {l̄} and thus unit propagation on C ⊗l D alone derives a conflict.

Consider now the case when F |α `1 D |αl. First, note that C is of the form (c1∨· · ·∨ci∨l),
α is then of the form c̄1 . . . c̄i l̄, and D is of the form (d1 ∨ · · · ∨ dj ∨ l̄). We show that unit
propagation derives a conflict on F ∧ (c̄1) ∧ · · · ∧ (c̄i) ∧ (d̄1) ∧ · · · ∧ (d̄j). By applying the
unit-clause rule with the unit clauses (d̄1), . . . , (d̄j), we derive either a conflict or the unit
clause (l̄) because D ∈ F . If we do not derive a conflict, we can continue to apply the
unit-clause rule, starting with the unit clauses (c̄1), . . . , (c̄i), (l̄). This must eventually
derive a conflict since F |c1 . . . ci l̄ = F |α and since F |α `1 D |αl with D |αl ⊆ D. It
follows that C is a RAT in F .

For the “if” direction, suppose C is a RAT in F , meaning that C contains a literal l such
that for every clause D ∈ Fl̄, it holds that F `1 C ⊗l D. Now, let α be the assignment
precluded by C and let D |αl ∈ F |αl for D ∈ F . We have to show that F |α `1 D |αl.
Since D |αl ∈ F |αl, we know that αl does not satisfy D. Thus, since αl satisfies l and
since α falsifies C, the clause D does neither contain l nor the negations of any other
literals in C, except for possibly l̄. If D does not contain l̄, then D |α = D |αl is contained
in F |α and hence the claim follows immediately.

Assume now that l̄ ∈ D. Then, D ∈ Fl̄ and thus F `1 C ⊗l D. Since α falsifies all
literals in C and since C ⊗l D is not a tautology, it follows that F |α `1 D \ {l̄}. Now,
all the literals in D \ {l̄} that are not contained in D |αl are anyhow falsified by α. Thus,
propagating their negations does not change F |α and so F |α `1 D |αl. It follows that C
is literal-propagation redundant with respect to F .

The LPR notion gives a simple proof why every non-empty RUP is LPR and thus a RAT:

Theorem 26. If C is a non-empty RUP with respect to a formula F , then C is literal-
propagation redundant with respect to F .

37



2. Redundant Clauses in Propositional Logic

Proof. Assume C = (l1 ∨ · · · ∨ ln) is a RUP in F and let α = l̄1 . . . l̄n be the assignment
precluded by C. As C is a RUP in F , we know that unit propagation derives a conflict
on F ∧ (l̄1) ∧ · · · ∧ (l̄n). But then unit propagation derives a conflict on F |α. Hence,
F |α `1 F |αl trivially holds for every l ∈ C and thus C is literal-propagation redundant
with respect to F .

By allowing the witnessing assignments to disagree with α on more than only one literal,
we obtain the more general notion of a set-propagation-redundant clause:

Definition 23. Let F be a formula, C a clause, and α the assignment precluded by C.
Then, C is set-propagation redundant (SPR) with respect to F if there exists a non-empty
set L ⊆ C of literals such that F |α `1 F |αL.

We denote the set {(F,C) | C is set-propagation redundant with respect to F} by SPR.

Example 18. Consider the formula F = (x∨y)∧(x∨ ȳ∨z)∧(x̄∨z)∧(x̄∨u)∧(ū∨x) and
the clause (x ∨ u). We can use the set L = {x, u} to show that (x ∨ u) is set-propagation
redundant with respect to F : First, note that C precludes the assignment α = x̄ ū, and
that αL = xu. Now, consider the formulas F |α = (y)∧ (ȳ ∨ z) and F |αL = (z). Clearly,
F |α `1 F |αL since unit propagation derives a conflict on (y) ∧ (ȳ ∨ z) ∧ (z̄). Hence,
(x ∨ u) is set-propagation redundant with respect to F . Observe also that (x ∨ u) is not
literal-propagation redundant with respect to F .

In contrast to LPR and RAT, the redundancy property of set-propagation-redundant
clauses (SPR) generalizes set-blocked clauses (SETBC). To show this, we first characterize
set-blocked clauses as follows:

Lemma 27. Let F be a formula, C a clause, L ⊆ C a non-empty set of literals, and α
the assignment precluded by C. Then, C is set-blocked by L in F if and only if, for every
D ∈ F , D |α = > implies D |αL = >.

Proof. For the “only if” direction, assume that there exists a clause D ∈ F such that
D |α = > but D |αL 6= >. Then, since α and αL disagree only on literals in L, it follows
that D contains a literal l ∈ L̄ and thus D ∈ FL̄. Now, αL falsifies exactly the literals in
(C \ L) ∪ L̄, and since αL does not satisfy any literals of D, it follows that D /∈ FL, and
that there exists no literal l ∈ D such that its complement l̄ is contained in (C \ L). But
then the set-resolvent C ⊗L D is not a tautology and so C is not set-blocked by L in F .

For the “if” direction, suppose C is not set-blocked by L in F , meaning that there exists
a clause D ∈ FL̄ \ FL such that the set-resolvent C ⊗L D = (C \ L) ∪ (D \ L̄) is not
a tautology. It follows that D does not contain any literals of L and that D \ L̄ does
not contain any literal l̄ such that l ∈ C \ L. But, αL falsifies exactly the literals in
(C \ L) ∪ L̄, and thus αL does not satisfy D. Now, since α falsifies L and since D ∈ FL̄,
we know that D |α = >. Hence, D |α = > does not imply D |αL = >.
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We can now use this lemma to prove that set-propagation-redundant clauses generalize
set-blocked clauses:

Theorem 28. If a clause C is set-blocked in a formula F , it is set-propagation redundant
with respect to F .

Proof. Assume that C is set-blocked by a set L in F and let α be the assignment precluded
by C. We show that F |α ⊇ F |αL, which implies that F |α `1 F |αL, and therefore that
C is set-propagation redundant with respect to F . Let D |αL ∈ F |αL. First, note that
D cannot be contained in FL, for otherwise D |αL = > and thus D |αL /∈ F |αL. Second,
observe that D can also not be contained in FL̄, since that would imply that D |α = >
and thus, by Lemma 27, D |αL = >. Therefore, D /∈ FL ∪ FL̄ and so D |α = D |αL. But
then, D |αL ∈ F |α. It follows that F |α ⊇ F |αL.

We thus know that set-propagation-redundant clauses generalize both RATs and set-
blocked clauses. Actually, they are even a strict generalization since the redundancy
properties of RATs and set-blocked clauses are incomparable (Theorem 23).

Note that F |α `1 F |αL is equivalent to F |α `1 FL̄ |αL. To see this, observe that if a
clause D |αL ∈ F |αL contains no literals from L̄, then αL does not assign any of its
literals, in which case F |α `1 D |αL trivially holds since D |αL is contained in F |α. To
check if a clause is set-propagation redundant, we therefore only need to check for each
D ∈ FL̄, if F |α `1 D |α.

By giving full freedom to the witnessing assignments, i.e., by only requiring them to
satisfy C, we finally arrive at the notion of a propagation-redundant clause:

Definition 24. Let F be a formula, C a clause, and α the assignment precluded by C.
Then, C is propagation redundant (PR) with respect to F if there exists an assignment
ω such that ω satisfies C and F |α `1 F |ω.

We denote the set {(F,C) | C is propagation redundant with respect to F} by PR.

Example 19. Let F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (x̄ ∨ z), C = (x), and let ω = x z be the
witnessing assignment. Then, C precludes the assignment α = x̄, and ω satisfies C.
Now, consider the formulas F |α = (y) and F |ω = (y). Clearly, F |α `1 F |ω, and so C
is propagation redundant with respect to F . Note that C is not set-propagation redundant
with respect to F because for L = {x}, we have αL = x and so F |αL contains the two
unit clauses (y) and (z), but it does not hold that F |α `1 (z). The fact that ω satisfies
the literal z which is not contained in C is crucial for ensuring propagation redundancy.

Deciding if a clause is propagation redundant with respect to a formula is NP-complete
in general. To prove this, we define the corresponding decision problem:

Definition 25. The propagation-redundancy problem is the following problem: Given a
formula F and a clause C, decide if C is propagation redundant with respect to F .
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Theorem 29. The propagation-redundancy problem is NP-complete.

Proof. We show NP-membership followed by NP-hardness.

NP-membership: Let α be the assignment precluded by C. To decide whether or not C
is propagation redundant with respect to F , just guess an assignment ω and check (in
polynomial time) if F |α `1 F |ω.

NP-hardness: We give a polynomial reduction from the satisfiability problem of propo-
sitional logic. Let F be an input formula (in CNF) for the satisfiability problem. We
define the following reduction function:

f(F ) = (G,C),

where C = (v̄) is a unit clause for some fresh variable v that does not occur in F , and G
is obtained from F by adding to each clause the literal v. We show that F is satisfiable
if and only if C is propagation redundant with respect to G.

For the “only if” direction, suppose F is satisfied by some assignment ω and let α = v be
the assignment precluded by C. Now, define a new assignment ω′ that agrees with ω
on var(ω) but additionally falsifies v. Then, ω′ disagrees with α on v. Moreover, since
ω satisfies F , it satisfies G. Hence, ω′ satisfies G and thus G |ω′ = ∅, implying that
G |α `1 G |ω′. It follows that C is propagation redundant with respect to G.

For the “if” direction, assume that C is propagation redundant with respect to G and
let α = v be the assignment precluded by C. Then, there exists an assignment ω′ such
that G |α `1 G |ω′ and ω′ falsifies C, meaning that ω′(v) = 0. Since every clause in G
contains v, it follows that α satisfies G and so it must be the case that ω′ satisfies G.
Since ω′(v) = 0 and G | v̄ = F , it follows that ω′ satisfies F .

Finally, the following example shows that PR does not generalize the redundancy property
of super-blocked clauses (SUPBC):

Example 20. Let F = (e∨ x̄)∧(ē∨ ȳ) and let C = (x∨y). To see that C is super-blocked
in F observe first that extF (C), the set of external variables of C in F , is the set {e}.
We need to show that C is set-blocked in F |e = (ȳ) and in F | ē = (x̄). But this is trivial
since x̄ does not occur in F |e, hence x is a pure literal in F |e and thus C is blocked by
x in F |e. Likewise, C is blocked by y in F | ē. We conclude that C is super-blocked in F .

In contrast, C is not propagation redundant with respect to F : Note that F |α = ∅ where
α = x̄ȳ is the assignment precluded by C. If C were propagation redundant with respect
to F , there would exist an assignment ω such that F |α `1 F |ω. But this can only be the
case if ω falsifies all clauses in F , which is impossible since ω cannot falsify both e and ē.

As we have already seen that there exist RAT clauses that are not super-blocked and
since PR generalizes RAT, we conclude:

Theorem 30. PR and SUPBC are incomparable.
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2.2.4 Globally-Blocked Clauses

The difference between set-propagation-redundant clauses and propagation-redundant
clauses is as follows: For a set-propagation-redundant clause, we allow the witnessing
assignment αL to differ from α (the assignment precluded by the clause) only on a set L
of literals that are contained in the clause itself. In contrast, for propagation-redundant
clauses, we allow the witnessing assignment ω to differ from α on arbitrary literals.

This brings us back to set-blocked clauses because we can generalize them by loosening
their definition in a similar way. Remember that a clause C is set-blocked in a formula F
if it contains a set L ⊆ C of literals such that for every clause D ∈ FL̄ \ FL, the set-
resolvent C ⊗L D is a tautology. By giving up the requirement that L be a subset of
C—only requiring that L be a non-tautological set of literals (i.e., a set containing no
complementary literals) that contains at least one literal of C—we arrive at globally-
blocked clauses:

Definition 26. A clause C is globally blocked in a formula F if there exists a non-
tautological set L of literals such that L ∩ C 6= ∅ and for every clause D ∈ FL̄ \ FL, the
set-resolvent C ⊗L D is a tautology.

We say that C is globally blocked by L in F , and we write GBC to refer to the set {(F,C) |
C is globally blocked in F}. Note that if L were allowed to contain complementary
literals, then every clause would be globally blocked by the set L of all literals, since in
this case FL̄ \ FL is empty.

Example 21. Consider the formula F = (x̄ ∨ y) ∧ (ȳ ∨ z) ∧ (x ∨ z̄) and the clause
C = (x̄ ∨ y). To see that C is globally blocked in F , consider the set L = {y, z} and the
formulas FL̄ = (ȳ∨z)∧ (x∨ z̄) and FL = (x̄∨y)∧ (ȳ∨z). We then have FL̄ \FL = (x∨ z̄),
and since the set-resolvent C ⊗L (x ∨ z̄) = (x̄ ∨ x) is a tautology, C is globally blocked
in F . Note that C is not set-blocked in F .

Since C in the above example is not set-blocked in F , we can conclude that globally-
blocked clauses are a strict generalization of set-blocked clauses. In fact, if we are given
a clause that is set-blocked by a non-empty set L, then we can remove from L all but
one literal. The resulting clause is guaranteed to be globally blocked:

Theorem 31. If a clause (c1 ∨ · · · ∨ cm ∨ l1 ∨ · · · ∨ ln) is set-blocked by L = {l1, . . . , ln}
in a formula F , then the clause (c1 ∨ cm ∨ li) is globally blocked by L in F for 1 ≤ i ≤ n.

Proof. Suppose C = (c1 ∨ · · · ∨ cm ∨ l1 ∨ · · · ∨ ln) is set-blocked by L = {l1, . . . , ln} in F ,
meaning that the set-resolvent C ⊗L D is a tautology for every clause D ∈ FL̄ \ FL.
Now, observe that C \ L = (c1 ∨ cm ∨ li) \ L for 1 ≤ i ≤ n. Therefore, C ⊗L D =
(C \ L) ∪ (D \ L̄) = (c1 ∨ cm ∨ li)⊗L D is a tautology for every clause D ∈ FL̄ \ FL. It
follows that (c1 ∨ . . . cm ∨ li) is globally blocked by L in F for 1 ≤ i ≤ n.
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The redundancy of globally-blocked clauses follows from the fact that they are propagation
redundant:

Theorem 32. If a clause C is globally blocked in a formula F , then C is propagation
redundant with respect to F .

Proof. Let C be a clause that is globally blocked in a formula F and let α be the
assignment precluded by C. We have to show that there exists an assignment ω such
that ω satisfies C and F |α `1 F |ω. Since C is globally blocked in F , there exists a set L
of literals such that L∩C 6= ∅ and for each clause D ∈ FL̄ \FL, the set-resolvent C ⊗LD
is a tautology. Now, define ω = αL and let D |ω in F |ω. Since L ∩ C 6= ∅, we know that
ω satisfies C. Moreover, as D |ω is contained in F |ω, we know that D is not satisfied
by ω and thus D /∈ FL. Towards a contradiction, assume now that D ∈ FL̄. Then, the
set-resolvent C ⊗L D is a tautology, which means that D \ L̄ contains a literal that is
satisfied by α and thus D must also be satisfied by ω. But then D |ω is not contained in
F |ω, a contradiction. Assume thus that D /∈ FL̄. We then know that D |α = D |ω and
thus D |ω ∈ F |α. But then F |α `1 D |ω trivially holds. It follows that C is propagation
redundant with respect to F .

Observe that by not requiring that L be a subset of C, we sometimes need to consider
clauses outside the resolution neighborhood of C to check if C is globally blocked:

Example 22. Consider the formula F = (x̄ ∨ y) and the unit clause (x). Clearly, (x)
is not set-blocked in F since the only set that could set-block (x) is the set {x}, but the
resolvent (x)⊗x (x̄ ∨ y) = (y) is not a tautology. However, (x) is globally blocked in F .
To see this, let L = {x, y} and observe that FL̄ \ FL = ∅. Now, consider the formula G,
obtained from F by adding the clause (ȳ). Then, (x) has the same resolution neighborhood
in both F and G. But, GL̄ \ GL = (ȳ), and the set-resolvent (x) ⊗L (ȳ) = ⊥ is not a
tautology. Therefore, (x) is not globally blocked by L in G. It is easy to see that any other
set of literals does also not globally block (x) in G and thus (x) is not globally blocked
in G.

In contrast to BC, SETBC, and SUPBC, the redundancy property of globally-blocked
clauses is therefore not a local redundancy property. This leads to the landscape of
redundancy properties in Figure 2.3. Next, we discuss relations of our redundancy
properties with concepts from the literature before we use them to define proof systems.

2.3 Relation to Concepts From the Literature
Our new global redundancy properties are related to variable instantiation [ABCH02],
autarkies [MS85], and safe assignments [WFS06].

If F | l̄ |= F |l holds for some literal l, then variable instantiation, as described by
Andersson et al. [ABCH02], says that F and F |l are equisatisfiable. Analogously, our
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Figure 2.3: Final landscape of redundancy properties including globally-blocked clauses.
A path from a redundancy property X to a redundancy property Y indicates that X is
more general than Y.

implication-based redundancy characterization (Definition 24 on page 34) identifies the
unit clause (l) as redundant with respect to F . Variable instantiation is thus a special
case of Definition 24.

As discussed in Section 2.1.4, an assignment ω is an autarky [MS85] for a formula F if it
satisfies all clauses of F that contain a literal to which ω assigns a truth value. Moreover,
if an assignment ω is an autarky for a formula F , then F and F |ω are equisatisfiable.
Similarly, propagation redundancy allows us to add all the unit clauses satisfied by an
autarky, with the autarky serving as a witness: Let ω be an autarky for some formula
F , let (l) be a unit clause for a literal l satisfied by ω, and let α = l̄ be the assignment
precluded by C. Notice that F |α ⊇ F |ω and thus (l) is propagation redundant with
respect to F .

According to Weaver, Franco, and Schlipf [WFS06], an assignment ω is considered safe
if, for every assignment α with var(α) = var(ω), it holds that F |α |= F |ω. Weaver et al.
showed that if an assignment ω is safe, then F |ω and F are equisatisfiable. In a similar
fashion, our approach allows us to preclude all the assignments α 6= ω by adding the
corresponding clauses to F . Through this, we obtain a formula that is logically equivalent
to F |ω. Note that safe assignments generalize autarkies and variable instantiation.
Moreover, while safe assignments only allow the application of an assignment ω to a
formula F if F |α |= F |ω holds for all assignments α 6= ω, our approach enables us to
preclude an assignment α as soon as F |α |= F |ω.
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CHAPTER 3
Proof Systems

Based on Redundant Clauses

In this chapter, we deal with proof systems that are based on the addition of redundant
clauses. Intuitively, proof systems describe methods for showing that formulas are
unsatisfiable. Suppose you are asked if the following formula is satisfiable:

(x ∨ y) ∧ (x̄ ∨ z) ∧ (x̄ ∨ z̄) ∧ (z)

After inspecting the formula for a while, you conclude that it is satisfiable. How do
you prove that the formula is indeed satisfiable? It’s easy, you just find a satisfying
assignment—for instance, the assignment x̄yz—and demonstrate that your assignment
satisfies at least one literal in each of the clauses.

Now we add the clause (x ∨ ȳ). Same question as before: is it satisfiable?

(x ∨ y) ∧ (x̄ ∨ z) ∧ (x̄ ∨ z̄) ∧ (z) ∧ (x ∨ ȳ)

Again, you investigate the formula for a while just to find that this time the formula is
unsatisfiable. But how are you going to prove this? Will you just go over all possible
assignments and show that each of them falsifies a clause? What if, in a next step, you
are presented with an unsatisfiable formula that has not only three but eight different
variables? Will you go over all 256 possible assignments? Surely, there must be a more
elegant way, and this is where proof systems come into play. Formally, we use the
following notion of a proof system, which is due to Cook and Reckhow [CR79]:

Definition 27. A proof system for propositional formulas in CNF is a surjective
polynomial-time-computable function f : Σ∗ → F where Σ is some alphabet and F
is the set of all unsatisfiable formulas.
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A proof system can thus be seen as a proof-checking function f that takes a proof
candidate P (which is a string over Σ) together with an unsatisfiable formula F and
checks in polynomial time if P is a correct proof of F . The requirement that f is surjective
means that there must exist a proof for every unsatisfiable formula. We sometimes use
the word proof system in a more colloquial way to denote the rules that define what
constitutes a correct proof of a certain type. One example for a proof system is the
well-known resolution proof system:

Definition 28. The resolution proof system defines that a resolution proof of a formula
F is a sequence C1, . . . , Cm of clauses such that Cm = ⊥ and every clause Ci (1 ≤ i ≤ m)
is either contained in F or it is a resolvent of two previous clauses Cj, Ck (j, k < i).

Since every resolvent is implied by its premises, a valid proof can only derive ⊥ if the
original formula is unsatisfiable. Moreover, it can be shown that there exists a resolution
proof for every unsatisfiable formula (see, e.g., [Lei97]).

The resolution proof system is captured by Definition 27 as follows: Define Σ as the
set of symbols used to construct resolution proofs (including ∧, ∨, ⊥, propositional
variables, etc.) and f as the function that maps every valid proof C1, . . . , Cm to the
formula containing the clauses of C1, . . . , Cm that were not derived with the resolution
rule. Finally, define f(P ) = ⊥ for each P ∈ Σ∗ that is not a valid resolution proof. As it
can be easily checked if some P ∈ Σ∗ is a valid resolution proof, f is polynomial-time
computable, and since there exists a resolution proof for every unsatisfiable formula, f is
surjective.

In the rest of the thesis, to show that a proposed system is indeed a proof system
according to Definition 27, we show that it is sound (i.e., if P is a proof of F , then F is
unsatisfiable) and complete (there exists a proof for every unsatisfiable formula) and that
the correctness of proofs can be checked in polynomial time.

As already mentioned, proof systems define ways to certify the unsatisfiability of formulas.
If a proof system for propositional logic lends itself to automation, it can form the basis
of a SAT solver, specifying what the solver can do to evaluate a formula. As we will see
in more detail later, most state-of-the-art SAT solvers are based on the resolution proof
system. Unfortunately, there exist only exponentially large resolution proofs for several
seemingly easy problems [Hak85, Urq87], implying that resolution-based solvers require
exponential time to solve these problems. Among them are the so-called pigeon hole
formulas, which, according to Nordström [Nor15], represent “arguably the single most
studied combinatorial principle in all of proof complexity.”

By extending the resolution proof system with a simple rule that allows the introduction
of definitions over new variables, Tseitin turned it into an exponentially stronger proof
system known as extended resolution [Tse68]:

Definition 29. An extended-resolution proof of a formula F is a sequence C1, . . . , Cm
of clauses such that Cm = ⊥ and every clause Ci (1 ≤ i ≤ m) is (1 ) contained in F , or
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(2 ) a resolvent of two previous clauses Cj, Ck (j, k < i), or (3 ) added by an application
of the extension rule: The extension rule adds the clauses (x∨ a), (x∨ b), and (x̄∨ ā∨ b̄)
where x is a new variable not occurring in previous clauses.

Note that the clauses introduced by the extension rule are equivalent to a definition of
the form (x↔ ā ∨ b̄). Up to this day, there are no known exponential lower-bounds on
the size of extended-resolution proofs and thus extended resolution is seen as one of the
most powerful proof systems. The introduction of new variables, however, blows up the
search space of possible proofs, and it is often unclear which definitions should be added
to a proof. Automatically finding useful clauses with new variables is therefore hard in
practice and resulted only in limited success in the past [AKS10, MHB13].

In the following, we present new proof systems that are highly expressive even when we
disallow the introduction of new variables. We illustrate the strength of our strongest
proof system by providing short clausal proofs of the pigeon hole formulas—without
introducing new variables. The size of the proofs is linear in the size of the formulas
and the new clauses added in the proofs contain at most two literals. In these proofs,
we add propagation-redundant clauses that are similar in nature to symmetry-breaking
predicates [CGLR96, DBBD16]. We compare our proofs with existing proofs of the
pigeon hole formulas in the DRAT proof system and show that our new proofs are much
smaller. To verify the correctness of the proofs, we used a toolchain involving a formally
verified proof checker for LRAT proofs [HJKW17] (for details see Section 3.3). Finally,
we also describe an algorithm for directly checking the correctness of proofs in our proof
systems.

3.1 Clausal Proofs
Given a formula F = C1∧· · ·∧Cm, a clausal derivation of a clause Cn from F is a sequence
(Cm+1, ωm+1), . . . , (Cn, ωn) of pairs where Ci is a clause and ωi, called the witness, is a
string (for all i > m). Such a sequence gives rise to formulas Fm, Fm+1, . . . , Fn, where
Fi = C1 ∧ · · · ∧ Ci. We call Fi the accumulated formula corresponding to the i-th proof
step. A clausal derivation is correct if every clause Ci (i > m) is redundant with respect
to the formula Fi−1 and if this redundancy can be checked in polynomial time (with
respect to the size of the proof) using the witness ωi. A clausal derivation is a (refutation)
proof of a formula F if it derives the empty clause, i.e., if Cn = ⊥. Clearly, since every
clause-addition step preserves satisfiability, and since the empty clause is unsatisfiable, a
refutation proof of F certifies the unsatisfiability of F . Note that the witnesses can also
be empty, in which case a clausal derivation boils down to a simple sequence of clauses.

By specifying in detail what kind of redundant clauses—and corresponding witnesses—
can be added to a clausal derivation, we obtain concrete proof systems. This is usually
done by choosing an efficiently checkable redundancy property that guarantees that the
addition of clauses fulfilling this property preserves unsatisfiability. A popular example
for a clausal proof system is DRAT [WHHJ14], the de facto standard for unsatisfiability
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proofs in practical SAT solving. DRAT allows the addition of a clause if it is a RAT (see
Definition 20). As it can be efficiently checked (even without using an explicit witness)
if a clause is a RAT with respect to a formula, and since RATs cover many types of
redundant clauses, the DRAT proof system is very powerful.

The strength of a clausal proof system depends on the generality of the underlying
redundancy property—the more general the redundancy property, the more clauses we
are allowed to add. A more general redundancy property thus gives us more freedom
when using a specific proof system to prove the unsatisfiability of a formula.

We now explicitly define the PR proof system as an instance of a clausal proof system:

Definition 30. Given a formula F = C1 ∧ · · · ∧ Cm, a PR derivation of a clause Cn
from F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn) where for every pair (Ci, ωi), one of the
following holds: (1 ) ωi is an assignment that satisfies Ci and Fi−1 |αi `1 Fi−1 |ωi with αi
being the assignment precluded by Ci, or (2 ) Cn = ⊥ and Fn−1 `1 ⊥. A PR derivation
of ⊥ from F is a PR proof of F .

The proof systems LPR and SPR are defined accordingly. In the definition above, we
treat the empty clause separately because only non-empty clauses can be propagation
redundant. If we allow the mentioned proof systems to delete arbitrary clauses, we obtain
the proof systems DLPR (which coincides with DRAT), DSPR, and DPR.

Note that if we wanted to stick strictly to Definition 27 of a proof system, then we would
need to include the clauses of F into a proof. In practice, however, proofs and formulas
are often treated separately, meaning that proof checkers expect the formula and the
proof as separate inputs.

All our proof systems are sound because the clause additions in these systems preserve
satisfiability and thus the empty clause can only be derived if the original formula is
unsatisfiable. To see that the proof systems are complete, observe that every resolution
proof is an LPR proof and thus also a proof in all our other proof systems: We have
already seen that resolvents are RUPs and that non-empty RUPs are literal-propagation
redundant (Theorem 26). Hence, resolvents are literal-propagation redundant and thus
every resolution proof is an LPR proof.

Actually, every extended-resolution proof is also an LPR proof: Consider the extension
rule of extended resolution, which adds the clauses (x∨ a), (x∨ b), and (x̄∨ ā∨ b̄), where
x is a new variable. The LPR proof system allows us first to add the clauses (x ∨ a) and
(x ∨ b) since there are no resolvents upon the new variable x and thus these clauses are
actually blocked clauses, which are literal-propagation redundant. Finally, we can add
the clause (x̄ ∨ ā ∨ b̄) since the only resolvents of this clause upon x̄ are the tautologies
(a∨ ā∨ b̄) and (b∨ ā∨ b̄), obtained by resolving upon x̄ with (x∨a) and (x∨b), respectively.
Hence, (x̄ ∨ ā ∨ b̄) is also a blocked clause.

Remember that a clause C is set-propagation redundant with respect to a formula F
if it contains a set L of literals such that F |α `1 F |αL, with α being the assignment
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precluded by C. Since L is a subset of C, we do not need to add the assignment αL
explicitly to an SPR proof. By requiring that L must consist of the first literals of C
when adding C to a proof (viewing a clause as a sequence of literals), we can give αL
implicitly, and thereby ensure that the SPR property is efficiently decidable. For instance,
when a proof contains the clause (l1 ∨ · · · ∨ lk), we first check if the SPR property holds
under the assumption that L = {l1}. If not, we proceed by assuming that L = {l1, l2},
and so on until L = {l1, . . . , lk}. We thus need to check only linearly many candidate
sets in the worst case. The same holds for the LPR proof system, where we can require
the literal l (for which F |α `1 F |αl is supposed to hold) to appear as the first literal of
the clause, which is actually the case for DRAT in practice.

In the following, we consider PR proofs without new variables.

3.2 Short PR Proofs of the Pigeon Hole Principle

In a landmark article, Haken [Hak85] showed that pigeon hole formulas cannot be refuted
by resolution proofs that are of polynomial size with respect to the size of the formulas.
In contrast, Cook [Coo76] proved that there are actually polynomial-size refutations of
the pigeon hole formulas in the stronger proof system of extended resolution. What
distinguishes extended resolution from general resolution is that it allows the introduction
of new variables via definitions. Cook showed how such definitions can be used to reduce
a pigeon hole formula of size n to a pigeon hole formula of size n− 1 over new variables.

Since every extended-resolution proof is also a PR proof, the short proofs of Cook can also
be obtained in the PR proof system as long as we allow the introduction of new variables.
In the following, however, we illustrate how the PR proof system admits short proofs of
pigeon hole formulas even without the introduction of new variables. This shows that
the PR system is strictly stronger than the resolution calculus, even when we forbid the
introduction of new variables. A pigeon hole formula PHPn intuitively encodes that n+ 1
pigeons have to be assigned to n holes such that no hole contains more than one pigeon.
In the encoding, a variable xp,h intuitively denotes that pigeon p is assigned to hole h:

PHPn :=
∧

1≤p≤n+1
(xp,1 ∨ · · · ∨ xp,n) ∧

∧
1≤p<q≤n+1

∧
1≤h≤n

(x̄p,h ∨ x̄q,h)

The clauses in the first conjunction encode that every pigeon is assigned to at least one
hole. The clauses in the second conjunction encode that no two pigeons are assigned to
the same hole. Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our
approach is similar to that of Cook, namely to reduce a pigeon hole formula PHPn to
the smaller PHPn−1. The difference is that in our case PHPn−1 is still defined on the
same variables as PHPn. Therefore, reducing PHPn to PHPn−1 boils down to deriving
the clauses (xp,1 ∨ · · · ∨ xp,n−1) for 1 ≤ p ≤ n.

Following Haken [Hak85], we use array notation for clauses: Every clause is represented
by an array of n+ 1 columns and n rows. An array contains a “ ” in the p-th column
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and h-th row if and only if the literal xp,h occurs in the corresponding clause; the array
contains a “ ” in the p-th column and h-th row if and only if the literal x̄p,h occurs in the
corresponding clause. Representing PHPn in array notation, we have for every clause
(xp,1 ∨ · · · ∨ xp,n) an array in which the p-th column is filled with “ ”. Moreover, for every
clause (x̄p,h ∨ x̄q,h), we have an array that contains two “ ” in row h—one in column p
and the other in column q. For instance, PHP3 is given in array notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

1
2
3

1 2 3 4
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We illustrate the general idea for reducing a pigeon hole formula PHPn to the smaller
PHPn−1 on the concrete formula PHP3. It should, however, become clear from our
explanation that the procedure works for every n > 1. If we want to reduce PHP3 to
PHP2, we have to derive the following three clauses:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We can do so by removing the “ ” from the last row of every column full of “ ”, except
for the last column, which can be ignored as it is not contained in PHP2. The key
observation is that a “ ” in the last row of the p-th column can be removed with the help
of so-called “diagonal clauses” of the form (x̄p,n∨ x̄n+1,h) (1 ≤ h ≤ n−1). We are allowed
to add these diagonal clauses since they are, as we will show, propagation redundant with
respect to PHPn. The arrays below represent the diagonal clauses introduced to remove
the “ ” from the last row of the first (left), second (middle), and third column (right):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We next show how exactly these diagonal clauses allow us to remove the bottom “ ” from
a column full of “ ”, or, in other words, how they help us to remove the literal xp,n from a
clause (xp,1 ∨ · · · ∨ xp,n) (1 ≤ p ≤ n). Consider, for instance, the clause (x2,1 ∨ x2,2 ∨ x2,3)
in PHP3. Our aim is to remove the literal x2,3 from this clause. Before we explain the
procedure, we like to remark that proof systems based on propagation redundancy can
easily simulate resolution: Since every resolvent of clauses in a formula F is implied by
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F , the assignment α precluded by the resolvent must falsify F and thus F |α `1 ⊥. We
explain our procedure textually before we illustrate it in array notation:

First, we add the diagonal clauses D1 = (x̄2,3 ∨ x̄4,1) and D2 = (x̄2,3 ∨ x̄4,2) to PHP3.
Now, we can derive the unit clause (x̄2,3) by resolving the two diagonal clauses D1 and
D2 with the original pigeon hole clauses P1 = (x̄2,3 ∨ x̄4,3) and P2 = (x4,1 ∨ x4,2 ∨ x4,3)
as follows: We obtain (x̄2,3 ∨ x4,2 ∨ x4,3) by resolving D1 with P2. Then, we resolve this
clause with D2 to obtain (x̄2,3 ∨ x4,3), which we resolve with P1 to obtain (x̄2,3). Note
that our proof system actually allows us to add (x̄2,3) immediately without carrying out
all the resolution steps explicitly. Finally, we resolve (x̄2,3) with (x2,1 ∨ x2,2 ∨ x2,3) to
obtain the desired clause (x2,1 ∨ x2,2).

We next illustrate this procedure in array notation. We start by visualizing the clauses
D1, D2, P1, and P2 that can be resolved to yield the clause (x̄2,3). The clauses are given
in array notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D1 D2 P1 P2 x̄2,3

We can then resolve (x̄2,3) with (x2,1 ∨ x2,2 ∨ x2,3) to obtain (x2,1 ∨ x2,2):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

(x̄2,3) (x2,1 ∨ x2,2 ∨ x2,3) (x2,1 ∨ x2,2)

This illustrates how a clause of the form (xp,1 ∨ · · · ∨ xp,n) (1 ≤ p ≤ n) can be reduced
to a clause (xp,1 ∨ · · · ∨ xp,n−1). By repeating this procedure for every column p with
1 ≤ p ≤ n, we can thus reduce a pigeon hole formula PHPn to a pigeon hole formula
PHPn−1 without introducing new variables. Note that the last step, in which we resolve
the derived unit clause (x̄2,3) with the clause (x2,1 ∨ x2,2 ∨ x2,3), is actually not necessary
for a valid PR proof of a pigeon hole formula, but we added it to simplify the presentation.

It remains to show that the diagonal clauses are indeed propagation redundant. To do so,
we show that for every assignment α = xp,n xn+1,h that is precluded by a diagonal clause
(x̄p,n ∨ x̄n+1,h), it holds that for the assignment ω = x̄p,n x̄n+1,h xp,h xn+1,n, PHPn |α =
PHPn |ω, implying that PHPn |α `1 PHPn |ω. We also argue why other diagonal and
unit clauses can be ignored when checking whether a new diagonal clause is propagation
redundant.

We again illustrate the idea on PHP3. We now use array notation also for assignments, i.e.,
a “ ” (“ ”) in column p and row h denotes that the assignment makes variable xp,h true
(false, respectively). Consider, for instance, the diagonal clause D2 = (x̄2,3 ∨ x̄4,2) that
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precludes α = x2,3 x4,2. The corresponding witnessing assignment ω = x̄2,3 x̄4,2 x2,2 x4,3
can be seen as a “rectangle” with two “ ” in the corners of one diagonal and two “ ” in
the other corners:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D2 α ω

To see that PHP3 |α and PHP3 |ω coincide on clauses (xp,1 ∨ · · · ∨ xp,n), consider that
whenever α and ω assign a variable of such a clause, they both satisfy the clause (since
they both have a “ ” in every column in which they assign a variable) and so they both
remove it from PHP3. For instance, in the following example, both α and ω satisfy
(x2,1 ∨ x2,2 ∨ x2,3) while both do not assign a variable of the clause (x3,1 ∨ x3,2 ∨ x3,3):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

(x2,1 ∨ x2,2 ∨ x2,3) (x3,1 ∨ x3,2 ∨ x3,3) α ω

To see that PHP3 |α and PHP3 |ω coincide on clauses of the form (x̄p,h ∨ x̄q,h), consider
the following: If α falsifies a literal of (x̄p,h ∨ x̄q,h), then the resulting clause is a
unit clause for which one of the two literals is not assigned by α (since α does not
assign two variables in the same row). Now, one can show that the same unit clause
is also contained in PHP3 |ω, where it is obtained from another clause: Consider, for
example, again the assignment α = x2,3 x4,2 and the corresponding witnessing assignment
ω = x̄2,3 x̄4,2 x2,2 x4,3 from above. The assignment α turns the clause C = (x̄3,2 ∨ x̄4,2)
into the unit clause C |α = (x̄3,2). The same clause is contained in PHP3 |ω, as it is
obtained from C ′ = (x̄2,2 ∨ x̄3,2) since C ′ |ω = C |α = (x̄3,2):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

α C C |α = C ′ |ω C ′ ω

Note that diagonal clauses and unit clauses that have been derived earlier can be ignored
when checking whether the current one is propagation redundant. For instance, assume
we are currently reducing PHPn to PHPn−1. Then, the assignments α and ω under
consideration only assign variables in PHPn. In contrast, the unit and diagonal clauses
used for reducing PHPn+1 to PHPn (or earlier ones) are only defined on variables outside
of PHPn. They are therefore contained in both PHPn |α and PHPn |ω. We can also
ignore earlier unit and diagonal clauses over variables in PHPn, i.e., clauses used for
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CNF Formula

x1,1 ∨ x1,2 ∨ x1,3
x2,1 ∨ x2,2 ∨ x2,3
x3,1 ∨ x3,2 ∨ x3,3
x4,1 ∨ x4,2 ∨ x4,3

x̄1,1 ∨ x̄2,1
x̄1,2 ∨ x̄2,2
x̄1,3 ∨ x̄2,3
x̄1,1 ∨ x̄3,1
x̄1,2 ∨ x̄3,2
x̄1,3 ∨ x̄3,3

. . .

DIMACS File

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0
10 11 12 0

-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

PR Proof File

-3 -10 -3 -10 1 12 0
-3 -11 -3 -11 2 12 0

-3 0
-6 -10 -6 -10 4 12 0
-6 -11 -6 -11 5 12 0

-6 0
-9 -10 -9 -10 7 12 0
-9 -11 -9 -11 8 12 0

-9 0
-2 0
-5 0

0

Lemmas

x̄1,3 ∨ x̄4,1
x̄1,3 ∨ x̄4,2

x̄1,3
x̄2,3 ∨ x̄4,1
x̄2,3 ∨ x̄4,2

x̄2,3
x̄3,3 ∨ x̄4,1
x̄3,3 ∨ x̄4,2

x̄3,3
x̄1,2
x̄2,2
⊥

Figure 3.1: Left, ten clauses of PHP3 using the notation as elsewhere in this thesis and
next to it the equivalent representation of these clauses in the DIMACS format used by
SAT solvers. Right, the full PR refutation consisting of clause-witness pairs. A repetition
of the first literal indicates the start of the optional witness.

reducing an earlier column or other diagonal clauses for the current column: If α assigns
one of their variables, then ω satisfies them and so they are not in PHPn |ω.

To compare our PR proofs of the pigeon hole formulas with existing DRAT proofs and
to verify their correctness (see Section 3.3), we wrote a script that generates the proofs
automatically. The format of our PR proofs is an extension of the DRAT format: the
first numbers of the i-th line denote the literals in the clause Ci. Positive numbers refer
to positive literals, and negative numbers refer to negative literals. In case a witness ωi
is provided, the first literal in the clause is repeated to denote the start of the witness.
As the witness needs to satisfy the clause, it is guaranteed to have a literal in common
with the clause. Our format requires that such a literal occurs at the first position of the
clause and of the witness. A 0 marks the end of a line. Figure 3.1 shows the formula and
the PR proof of our running example PHP3 from the previous section.

Table 3.1 compares our PR proofs with existing DRAT proofs of the pigeon hole formulas
(hole*.cnf). It also compares PR proofs with existing DRAT proofs of formulas from
another challenging benchmark suite of the SAT competition that allows two pigeons per
hole (tph*.cnf). For the latter formulas, PR proofs can be constructed in a similar way
as for the classical pigeon hole formulas. Notice that the PR proofs do not introduce new
variables and that they contain fewer clauses than their corresponding formulas. The
DRAT proof of PHPn contains a copy of the formula PHPk for each k < n.

Finally, we want to mention that short SPR proofs (without new variables) of the pigeon
hole formulas can be constructed by first adding set-propagation-redundant clauses of
the form (x̄p,n ∨ x̄n+1,h ∨ xp,h ∨ xn+1,n) and then deriving diagonal clauses from them via
resolution. We left these proofs out since they are twice as large as the PR proofs and
their explanation is less intuitive.
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Table 3.1: The sizes (in terms of variables and clauses) of pigeon hole formulas (hole*.cnf)
and two-pigeons-per-hole formulas (tph*.cnf) as well as the sizes of their PR proofs (as
described in Section 3.2) and their DRAT proofs (based on symmetry breaking [HHJW15]).

Input Formula PR Proof DRAT Proof
Formula Variables Clauses Variables Clauses Variables Clauses
hole10.cnf 110 561 110 385 440 3 685
hole11.cnf 132 738 132 506 572 5 236
hole12.cnf 156 949 156 650 728 7 228
hole13.cnf 182 1 197 182 819 910 9 737
hole20.cnf 420 4 221 420 2 870 3 080 49 420
hole30.cnf 930 13 981 930 9 455 9 920 234 205
hole40.cnf 1 640 32 841 1 640 22 140 22 960 715 040
hole50.cnf 2 550 63 801 2 550 42 925 44 200 1 708 925
tph8.cnf 136 5 457 136 680 3 520 834 963
tph12.cnf 300 27 625 300 2 300 11 376 28 183 301
tph16.cnf 528 87 329 528 5 456 not available, too large
tph20.cnf 820 213 241 820 10 660 not available, too large

PRcheck (formula Fm = C1, . . . , Cm; PR proof (Cm+1, ωm+1), . . . , (Cn, ωn))
for i ∈ {m+ 1, . . . , n} do

for D ∈ Fi−1 do
if D |ωi 6= > and (D |αi = > or D |ωi ⊂ D |αi) then

if Fi−1 |αi 6`1 D |ωi then return failure
Fi := Fi−1 ∪ {Ci}

return success

Figure 3.2: Pseudo Code of the PR-Proof Checking Algorithm.

3.3 Checking the Correctness of PR proofs

We present two different approaches to checking the correctness of PR proofs. The first
approach involves a chain of translations and a formally verified proof checker: We
start with a PR proof and translate it into a DRAT proof using the recently invented
tool pr2drat by Marijn Heule and Armin Biere [HB18]. We then use the DRAT-trim
checker [WHHJ14] to optimize the DRAT proof (i.e., to remove redundant proof parts)
and to convert it into the LRAT format. Finally, we check the correctness of the resulting
LRAT proof using a formally verified proof checker [HJKW17]. We used this approach to
certify the correctness of the proofs for the pigeon hole formulas presented in the previous
section.
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The second approach, which was implemented by Marijn Heule on top of his proof checker
DRAT-trim, is to directly check PR proofs. Figure 3.2 shows the pseudo code of an
algorithm for checking the correctness of PR proofs. Note that in the proof system DPR,
we allow the deletion of arbitrary clauses. Because of this, nothing has to be checked
for deletion steps and so the algorithm can be easily generalized to DPR proof checking.
The first “if” statement is not necessary but significantly improves the efficiency of the
algorithm.

The worst-case complexity of the algorithm is O(kn3), where n is the size of the final
formula and k is the maximal clause length. The reason for this is that there are n−m
iterations of the outer for-loop and for each of these iterations, the inner for-loop is
performed |Fi| times, i.e., once for every clause in Fi. Given that Fi contains i clauses, we
know that the size of F is bounded by n. It follows that the inner for-loop is performed
O(mn) times. Now, there is a unit-propagation test in the inner if-statement: If k is
the maximal clause size and n is an upper bound for the size of the formula, then the
complexity of unit propagation is known to be O(kn). Hence, the overall worst-case
complexity of the algorithm is O(mkn2) = O(kn3).

This complexity is the same as for RAT-proof checking and thus also for DRAT-proof
checking. In fact, the pseudo-code for RAT-proof checking and PR-proof checking is the
same apart from the first if-statement, which is always true in the worst case, both for
RAT and PR. Although the theoretical worst-case complexity makes proof checking seem
very expensive, it can be done quite efficiently in practice: For the DRAT proofs produced
by solvers in the SAT competitions, we observed that the runtime of proof checking is
close to linear with respect to the sizes of the proofs.

Finally, we want to highlight that verifying the PR property of a clause is relatively easy
as long as a witnessing assignment is given. For an arbitrary clause without a witnessing
assignment, however, deciding the PR property is an NP-complete problem (Theorem 29
on page 40). We therefore believe that in general, verifying a PR proof of a formula is
simpler than the actual solving/proving.

Next, we use the PR proof system to define a new SAT solving paradigm.
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CHAPTER 4
Satisfaction-Driven

Clause Learning

Most state-of-the-art SAT solvers are based on the conflict-driven clause learning (CDCL)
paradigm [MSS99, MMZ+01]. At its core, CDCL is based on the resolution proof system,
which means that the same limitations that apply to resolution also apply to CDCL.
Most importantly, a CDCL-based solver needs exponential time to solve formulas that
have only resolution proofs of exponential size, such as the pigeon hole formulas.

To break this exponential barrier, we introduce satisfaction-driven clause learning (SDCL),
a SAT solving paradigm that extends CDCL in such a way that it can exploit the strengths
of our PR proof system. Intuitively, SDCL extends CDCL by pruning the search space
of truth assignments more aggressively. While a pure CDCL solver learns only clauses
that can be efficiently derived via resolution, an SDCL solver also learns stronger clauses.
To learn these clauses, the solver uses so-called pruning predicates: Given a formula
and an assignment (in practice, this is the assignment currently explored by the solver),
a pruning predicate is a simple propositional formula that encodes the question if the
assignment can be safely pruned from the search space. To perform the pruning, the
solver learns the clause that precludes the assignment (see Definition 21 on page 34).
Thus, while solving a single hard formula, SDCL solves several simple formulas to improve
overall efficiency. Figure 4.1 illustrates how learned clauses can prune the search space.

In the following, we first discuss the conflict-driven clause learning paradigm. We then
introduce satisfaction-driven clause learning and present two different pruning predicates.
Finally, we present an experimental evaluation of SDCL on hard formulas.
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Figure 4.1: The tree represents the search space of truth assignments over the variables
x, y, and z. Every branch from the root node to a leaf corresponds to an assignment. By
learning the clause (x̄ ∨ y), a solver can prune all branches where x is true and y is false.

4.1 Conflict-Driven Clause Learning

Figure 4.2 shows the pseudo code of CDCL. In a nutshell, a CDCL solver performs
the following operations to decide the satisfiability of a formula (for a more detailed
discussion of CDCL, we refer to [MSLM09]):

First, the solver performs unit propagation until either it derives a conflict or the formula
contains no more unit clauses. If it derives a conflict, it analyzes the conflict to learn
a clause that prevents it from repeating similar (bad) decisions in the future (“clause
learning”). In case this clause is the (unsatisfiable) empty clause, the solver can conclude
that the formula is unsatisfiable. In case it is not the empty clause, the solver revokes
some of its variable assignments (“backjumping”) and then repeats the whole procedure
again by performing unit propagation. If, however, the solver does not derive a conflict,
there are two options: Either all variables are assigned, in which case the solver can
conclude that the formula is satisfiable, or there are still unassigned variables, in which
case the solver first assigns a truth value to an unassigned variable (the actual variable

CDCL(formula F )
1 α := ∅
2 forever do
3 α := UnitPropagate (F, α)
4 if α falsifies a clause in F then
5 C := AnalyzeConflict()
6 F := F ∧ C
7 if C is the empty clause ⊥ then return UNSAT
8 α := BackJump(C,α)

13 else
14 if all variables are assigned then return SAT
15 l := Decide ()
16 α := α ∪ {l}

Figure 4.2: CDCL Algorithm.
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and the truth value are chosen based on a so-called decision heuristic) and then continues
by again performing unit propagation.

An important feature of CDCL is that a solver can only learn new clauses that are
efficiently derivable from previous clauses via resolution. While this has the advantage
that CDCL solvers can produce resolution proofs, it brings with it all the inefficiencies
of the resolution proof system. We thus generalize CDCL in the following to allow the
addition of even stronger clauses.

4.2 Generalizing Conflict-Driven Clause Learning

Our satisfaction-driven clause learning (SDCL) paradigm extends the CDCL paradigm
in the following way: Whenever a CDCL solver finishes unit propagation without having
derived a conflict and without having assigned all variables, it picks an unassigned variable
and assigns a truth value to it. In contrast, an SDCL solver does not immediately after
unit propagation make a new variable assignment. Instead, it first checks if the current
assignment (and all its extensions) can be pruned from the search space by learning the
clause that precludes the assignment. If the pruning cannot be performed, the SDCL
solver makes a new variable assignment, just like a CDCL solver. If the pruning can be
performed, however, it analyzes the clause that precludes the current assignment and
possibly shortens it before adding it to the formula. It then revokes some of its variable
assignments and continues by again performing unit propagation.

To test if the current assignment can be pruned, the solver generates a (possibly) simple
formula and passes it to another SAT solver. An SDCL solver thus solves several simple
formulas in order to solve a single hard formula. We call the simple formulas pruning
predicates:

Definition 31. Let F be a formula, α an assignment, and C the clause that precludes α.
A pruning predicate for F and α is a formula Pα(F ) such that the following holds:
If Pα(F ) is satisfiable, then C is redundant with respect to F .

If the pruning predicate for a formula F and an assignment α is satisfiable, we can add
the clause that precludes α to F without affecting satisfiability. As we will see, we can
often learn a subclause of the clause that precludes α. The pseudo code for the SDCL
paradigm is given in Figure 4.3. Removing the lines 9 to 12 would result in the classical
CDCL algorithm. Line 9 corresponds to a solver call. The call of AnalyzeWitness in line
10 checks if the clause that precludes the current assignment can be shortened.

Next, we introduce two different pruning predicates and show how the resulting clauses
can be shortened. When defining pruning predicates, we have to deal with an important
trade-off: Solving them should be efficient to ensure usefulness in practice while they
should be as satisfiable as possible to maximize pruning.
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SDCL(formula F )
1 α := ∅
2 forever do
3 α := UnitPropagate (F, α)
4 if α falsifies a clause in F then
5 C := AnalyzeConflict()
6 F := F ∧ C
7 if C is the empty clause ⊥ then return UNSAT
8 α := BackJump(C,α)
9 else if the pruning predicate Pα(F ) is satisfiable then

10 C := AnalyzeWitness()
11 F := F ∧ C
12 α := BackJump(C,α)
13 else
14 if all variables are assigned then return SAT
15 l := Decide ()
16 α := α ∪ {l}

Figure 4.3: SDCL Algorithm.

4.3 Pruning Predicates

We present two pruning predicates. We call them

• positive reduct and

• filtered positive reduct.

The two reducts differ in their generality. Given a formula F and an assignment α, the
positive reduct is satisfiable if and only if the clause C that precludes α is set-blocked in F ;
the filtered positive reduct is satisfiable if and only if C is set-propagation redundant with
respect to F . The positive reduct is therefore less satisfiable than the filtered positive
reduct, but it is also easier to construct.

We start with the positive reduct, which is obtained from satisfied clauses of the original
formula by removing unassigned literals. In the following, given a clause C and an
assignment α, we denote by touchedα(C) the subclause of C that contains exactly the
literals assigned by α. Analogously, we denote by untouchedα(C) the subclause of C that
contains the literals not assigned by α.

Definition 32. Given a formula F and an assignment α, the positive reduct pα(F ) of
F and α is the formula G ∧ C where G = {touchedα(D) | D ∈ F and D |α = >} and C
is the clause that precludes α.

60



4.3. Pruning Predicates

We next show that the positive reduct is satisfiable if and only if the clause precluded
by α is a set-blocked clause, which implies that it is also a propagation-redundant
clause (remember that deciding set-blockedness and propagation redundancy are both
NP-complete problems). We show later that we can usually shorten this set-blocked
clause and thereby turn it into a PR clause that might not be set-blocked anymore.

Theorem 33. Let F be a formula, α an assignment, and C the clause that precludes α.
Then, C is set-blocked by L in F if and only if αL satisfies the positive reduct pα(F ).

Proof. For the “only if” direction, assume that C is set-blocked by L in F , meaning that
for every clause D ∈ FL̄ \ FL, the set-resolvent C ⊗L D is a tautology. We show that
αL satisfies pα(F ). Clearly, αL satisfies C since L is a non-empty subset of C. Now,
let D′ ∈ pα(F ) be a clause that is different from C. Then, D′ = touchedα(D) for some
clause D ∈ F . If D ∈ FL, then D′ is clearly satisfied by αL. Moreover, if D /∈ FL̄, then α
agrees with αL on var(D) (and thus on var(D′)), and since α satisfies pα(F ), it follows
that αL satisfies D′. Assume now that D ∈ FL̄ \ FL. Then, the set-resolvent C ⊗L D
is a tautology. This means that D \ L̄ contains a literal c̄ such that c ∈ C \ L. Since α
falsifies C and since αL agrees with α on var(C \ L), we can conclude that αL satisfies
D′. It follows that αL satisfies the positive reduct pα(F ).

For the “if” direction, assume that αL satisfies pα(F ). We show that C is set-blocked by
L in F . Let D ∈ FL̄ \ FL. Since α falsifies C, it falsifies L. Therefore, α satisfies L̄ and
thus pα(F ) contains the clause touchedα(D), obtained from a clause D ∈ F by removing
all literals that are not assigned by α. By assumption, αL satisfies touchedα(D) and since
it falsifies L̄, it must satisfy some literal l ∈ touchedα(D) \ L̄. But then l̄ ∈ C \ L and
thus the set-resolvent C ⊗L D is a tautology.

When constructing the positive reduct, we take all clauses of F that are satisfied by α
and then remove from these clauses the literals that are not touched by α. In the filtered
positive reduct, which we present next, we do not take all satisfied clauses of F but only
those for which the untouched part is not implied by F |α via unit propagation:

Definition 33. Let F be a formula and α an assignment. The filtered positive reduct
fα(F ) of F and α is the formula G ∧ C where C is the clause that precludes α and
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

The filtered positive reduct is a subset of the positive reduct since F |α 6`1 untouchedα(D)
implies D |α = >. To see this, suppose D |α 6= >. Then, D |α is contained in F |α
and since untouchedα(D) = D |α, it follows that F |α `1 untouchedα(D). Therefore, the
filtered positive reduct is obtained from the positive reduct by removing (“filtering out”)
every clause touchedα(D) for which F |α `1 untouchedα(D).

Example 23. Let F = (x∨ y)∧ (x̄∨ y) and consider the assignment α = x. The positive
reduct pα(F ) = (x) ∧ (x̄) is unsatisfiable whereas the filtered positive reduct fα(F ) = (x̄),
obtained by filtering out the clause (x), is satisfiable. The clause (x) is not contained in
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the filtered positive reduct because untouchedα(x ∨ y) = (y) and F |α = (y), which clearly
implies F |α `1 untouchedα(x ∨ y). Note that the clause (x̄) is contained in the positive
reduct and in the filtered positive reduct because it precludes the assignment α.

If a non-empty assignment α falsifies a formula F , then the filtered positive reduct fα(F )
is satisfiable. To see this, observe that ⊥ ∈ F |α and therefore F |α `1 untouchedα(D)
for every clause D ∈ F . Hence, fα(F ) = C with C being the clause that precludes α.
The ordinary positive reduct does not have this property. The filtered positive reduct
identifies exactly the clauses that are set-propagation redundant:

Theorem 34. Let F be a formula, α an assignment, and C the clause that precludes α.
Then, C is set-propagation redundant with respect to F if and only if the filtered positive
reduct fα(F ) is satisfiable.

Proof. For the “only if” direction, suppose C is set-propagation redundant with respect
to F , meaning that it contains a non-empty set L of literals such that F |α `1 F |αL.
We show that αL satisfies all clauses of fα(F ). Let D′ ∈ fα(F ). By definition, D′ is
either the clause that precludes α or it is of the form touchedα(D) for some clause
D ∈ F such that F |α 6`1 untouchedα(D). In the former case, D′ is clearly satisfied
by αL since αL must disagree with α. In the latter case, since F |α `1 F |αL, it
follows that either F |α `1 D |αL or αL satisfies D. Now, it cannot be the case that
F |α `1 D |αL since var(αL) = var(α) and thus D |αL = untouchedα(D), which would
imply F |α `1 untouchedα(D). Therefore, αL must satisfy D. But then αL must satisfy
D′ = touchedα(D), again since var(αL) = var(α). It follows that fα(F ) is satisfiable.

For the “if” direction, assume that αL satisfies the filtered positive reduct fα(F ). We
show that F |α `1 F |αL. Let D |αL ∈ F |αL. Since D |αL is contained in F |αL,
we know that αL does not satisfy D and so it does not satisfy touchedα(D). Hence,
touchedα(D) cannot be contained in fα(F ), implying that F |α `1 untouchedα(D). But,
D |αL = untouchedα(D) since var(αL) = var(α) and thus it follows that F |α `1 D |αL.
We conclude that C is set-propagation redundant with respect to F .

Since propagation-redundant clauses generalize set-propagation-redundant clauses, it is
natural to search for an encoding that characterizes the propagation-redundant clauses.
Such an encoding could possibly lead to an even more aggressive pruning of the search
space. Finding such an encoding is still part of our future work. However, as we will see
in the following, an encoding that characterizes the propagation-redundant clauses must
necessarily be large because it has to reason over all possible clauses of a formula.

The positive reduct and the filtered positive reduct yield small formulas that can be
easily solved in practice. The downside, however, is that nothing can be learned from
their unsatisfiability. This is different for a pruning predicate that encodes propagation
redundancy:
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Theorem 35. If a clause (l1 ∨ · · · ∨ lk) is not propagation redundant with respect to a
formula F , then F implies (l̄1) ∧ · · · ∧ (l̄k).

Proof. Assume (l1∨· · ·∨lk) is not propagation redundant with respect to F , or equivalently
that all assignments ω with F | l̄1 . . . l̄k `1 F |ω agree with l̄1 . . . l̄k. Then, no assignment
that disagrees with l̄1 . . . l̄k can satisfy F . As a consequence, F implies (l̄1)∧· · ·∧(l̄k).

By solving a pruning predicate for propagation-redundant clauses, we thus not only
detect if the current assignment can be pruned (in case the predicate is satisfiable) but
also if the formula is unsatisfiable under any extension of the assignment (in case the
predicate is unsatisfiable). We are thus afraid that such an encoding is generally hard to
solve and that it might therefore not be useful for SDCL solving in practice.

4.4 Shortening Learned Clauses
If the pruning predicate for a formula F and an assignment α is satisfiable, we know that
we can learn the clause that precludes α because it is redundant. In case of the positive
reduct and the filtered positive reduct, it is even a propagation-redundant clause because
set-blocked clauses and set-propagation-redundant clauses are propagation redundant.
To prune the search space even more effectively than by just adding the clause that
precludes α, we can in many cases learn a subclause of this clause. The advantage of this
is that shorter clauses prune the search space more effectively since they preclude more
assignments:

Suppose an SDCL solver is trying to solve a formula F . If α is the current assignment of
the solver, it consists of two parts—a part αd of variable assignments that were decisions
by the solver and a part αu of assignments that were derived from these decisions via
unit propagation on F . If the positive reduct pα(F ) or the filtered positive reduct fα(F )
is satisfiable, then we know that the clause that precludes α is propagation redundant
with respect to F . Therefore, there exists an assignment ω such that F |α `1 F |ω. But
then, since unit propagation derives all the assignments of αu from F |αd, it must also
hold that F |αd `1 F |ω, and so the clause that precludes αd is propagation redundant
with respect to F . We conclude:

Theorem 36. Let C be a clause that is propagation redundant with respect to a formula F
and let α = αd ∪ αu be the assignment precluded by C. Assume furthermore that the
assignments in αu are derived via unit propagation on F |αd. Then, the clause that
precludes αd is propagation redundant with respect to F .

We can thus learn the clause that precludes only the decision literals in α, and we still
end up with a proof in the PR proof system. If we only wanted to preclude αd, we could
also just immediately compute the pruning predicate for F and αd instead of the pruning
predicate for F and αd ∪ αu. The disadvantage of this, however, is that it makes the
pruning predicate less satisfiable, as the following example shows:
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Example 24. Consider the formula F = (x̄ ∨ y) ∧ (x ∨ ȳ) and the assignments α = x y,
αd = x, and αu = y. Clearly, the unit clause y is derived from F |αd and thus α = αd∪αu.
Now, observe that the positive reduct pα(F ) = F ∧ (x̄ ∨ ȳ) is satisfiable, implying that
also the filtered positive reduct fα(F ) is satisfiable. On the other hand, the filtered positive
reduct fαd(F ) = (x) ∧ (x̄) is unsatisfiable, implying that also the positive reduct pαd(F ) is
unsatisfiable.

It thus makes sense to first compute the filtered positive reduct with respect to α and
then—in case it is satisfiable—remove the propagated literals to obtain the shorter clause
that precludes αd.

4.5 Empirical Evaluation

In the following, we demonstrate that an SDCL solver can prove the unsatisfiability of
pigeon hole formulas, Tseitin formulas over expander graphs [Tse68, CS00], and mutilated
chessboard problems [McC64, Ale04, DR01]. All three formula families are well-known
for not admitting resolution proofs of polynomial size.

Armin Biere implemented an SDCL solver, called SaDiCaL , that can learn propagation-
redundant clauses using either the positive reduct or the filtered positive reduct (the
source code of SaDiCaL is available at http://fmv.jku.at/sadical). The imple-
mentation provides a simple but efficient framework to evaluate new SDCL-inspired ideas
and heuristics. It closely follows the pseudo-code shown in Figure 4.3 and computes the
pruning predicates before making variable assignments via the decision heuristics. This
is costly in general, but helps the solver detect redundant clauses as early as possible.
Our goal is to determine if short PR proofs can be found automatically.

Two aspects of SDCL are crucial for its performance: the pruning predicates and the
decision heuristics. For the pruning predicates, we ran experiments with both the positive
reduct and the filtered positive reduct. For the decision heuristics, we chose a heuristic
that is different from the VSIDS (variable state independent decaying sum) [MMZ+01]
heuristic, which is the most popular heuristic for CDCL solvers. The idea behind the
VSIDS heuristic is to select the variable that occurs most frequently in recent conflict
clauses.

Our heuristic generally picks the variable that occurs most frequently in short clauses.
Also, it tries to assign only literals that occur in clauses that are touched but not satisfied
by the current assignment. There is one more restriction: whenever a (filtered) positive
reduct is satisfiable, the heuristic makes all literals in the witness (i.e., in the satisfying
assignment of the pruning predicate) that disagree with the current assignment more
important than all other literals in the formula. This restriction is removed when the
solver backtracks to the first variable (i.e., when a unit clause is learned) and added again
when a new propagation-redundant clause is found. We added this restriction because we
observed that literals in the witness that disagree with the current assignment typically
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occur in short propagation-redundant clauses. Making these literals more important than
other literals increases the likelihood of learning short clauses.

We compare the solver SaDiCaL in three settings, all with proof logging:

(1) plain CDCL,
(2) SDCL with the positive reduct pα(F ), and
(3) SDCL with the filtered positive reduct fα(F ).

Additionally, we include the winner of the 2018 SAT Competition, the CDCL-based
solver MapleLCMDistChronoBT (short MLBT) [NR18].

We first present results regarding Tseitin formulas. In short, Tseitin formulas represent
the following graph problem: Given a graph with 0/1-labels for each vertex such that
an odd number of vertices has label 1, does there exist a set of edges such that (after
removing edges not in the set) every vertex with label 0 has an even degree and every
vertex with label 1 has an odd degree? The answer is no as the sum of all degrees is
always even (the sum of all degrees is twice the number of edges). The resulting formula
is therefore unsatisfiable by construction. Tseitin formulas defined over expander graphs
are known to require resolution proofs of exponential size. Specialized reasoning, in
particular the detection of XOR clauses combined with Gaussian elimination, is known
to solve the formulas.

We performed our experiments on a machine using a Xeon E5-2690 CPU with 2.6 GHz
and 64 GB memory. The correctness of all the produced proofs was verified with a
toolchain involving a formally verified proof checker as presented in Section 3.3. Table 4.1
shows the solver performance on small (Urquhart-s3*), medium (Urquhart-s4*), and large
(Urquhart-s5*) Tseitin formulas. Only SaDiCaL with the filtered positive reduct is able
to efficiently prove unsatisfiability of all these instances. To the best of our knowledge,
SaDiCaL is the first solver that produces machine-checkable proofs of these formulas.
Notice that with the ordinary positive reduct it is impossible to solve any of the formulas.

Table 4.2 shows a runtime comparison for the pigeon hole formulas, again including PR
proof logging. Although the pigeon hole formulas are hard for resolution, they can be
solved efficiently with SDCL using the positive reduct. Notice that the computational
costs of the solver with the filtered positive reduct are about three to four times as large
compared to the solver with the positive reduct. This is caused by the overhead of
computing the filtering. The sizes of the PR proofs produced by both versions are similar.

Finally, we performed experiments with the recently released 2018 SAT Competition
benchmarks. We expected slow performance on most benchmarks due to the high overhead
of solving pruning predicates before making decisions. However, SaDiCaL outperformed
the participating solvers on mutilated chessboard problems [McC64] (Table 4.3), which
were contributed by Alexey Porkhunov.

For example, with the filtered positive reduct SaDiCaL can prove unsatisfiability of
the 18 × 18 mutilated chessboard in 89 seconds. In the 2018 SAT Competition, all

65



4. Satisfaction-Driven Clause Learning

Table 4.1: Runtime comparison (in seconds) on Tseitin formulas. The columns present
the solving times for the solver MLBT as well as for SaDiCaL in CDCL mode (Plain),
SDCL with the positive reduct pα(F ), and SDCL with the filtered positive reduct fα(F ).

Formula MLBT Plain pα(F ) fα(F )
Urquhart-s3-b1 2.95 16.31 > 3600 0.02
Urquhart-s3-b2 1.36 2.82 > 3600 0.03
Urquhart-s3-b3 2.28 2.08 > 3600 0.03
Urquhart-s3-b4 10.74 7.65 > 3600 0.03
Urquhart-s4-b1 86.11 > 3600 > 3600 0.32
Urquhart-s4-b2 154.35 183.77 > 3600 0.11
Urquhart-s4-b3 258.46 129.27 > 3600 0.16
Urquhart-s4-b4 > 3600 > 3600 > 3600 0.14
Urquhart-s5-b1 > 3600 > 3600 > 3600 1.27
Urquhart-s5-b2 > 3600 > 3600 > 3600 0.58
Urquhart-s5-b3 > 3600 > 3600 > 3600 1.67
Urquhart-s5-b4 > 3600 > 3600 > 3600 2.91

Table 4.2: Runtime comparison (in seconds) on pigeon hole formulas.

Formula MLBT Plain pα(F ) fα(F )
hole20 > 3600 > 3600 0.26 0.49
hole30 > 3600 > 3600 1.96 4.03
hole40 > 3600 > 3600 9.02 19.54
hole50 > 3600 > 3600 28.63 65.90

Table 4.3: Runtime comparison (in seconds) on mutilated chessboard problems.

Formula MLBT Plain pα(F ) fα(F )
mchess_15 51.53 2480.67 > 3600 13.14
mchess_16 380.45 2115.75 > 3600 15.52
mchess_17 2418.35 > 3600 > 3600 25.54
mchess_18 > 3600 > 3600 > 3600 43.88
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other solvers—apart from CaDiCaL (a CDCL solver by Armin Biere) solving it in 828
seconds—timed out after 5000 seconds.

Considering the outcome of our experiments, we believe that SDCL—when combined with
sophisticated heuristics and encodings—is a promising SAT-solving paradigm for formulas
that are too hard for ordinary CDCL solvers. Moreover, proofs of challenging problems
can be enormous in size, such as the 2 petabytes proof of Schur Number Five [Heu18].
SDCL improvements have the potential to produce substantially smaller proofs.
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CHAPTER 5
Redundant Clauses in

First-Order Logic

After having considered propositional logic, we now move on to the more expressive
first-order logic case. The theme of our work, however, stays the same: we still focus on
clause redundancy.

As we have seen in previous chapters, research on SAT solving has given rise to a wide
variety of redundancy properties that play an important role in state-of-the-art reasoning
engines. For many of these redundancy properties, however, it was unclear whether
or not they could be lifted to the level of first-order logic. We address this issue and
introduce the principle of implication modulo resolution—a first-order generalization of
quantified implied outer resolvents as introduced by Heule et al. [HSB16] in the context
of quantified Boolean formulas. The principle of implication modulo resolution allows us
to lift several redundancy properties in a uniform way.

Informally, a clause C is implied modulo resolution by a CNF formula F if C contains a
literal such that all resolvents upon this literal are implied by F . Here, by all resolvents
we mean all first-order resolvents with clauses in F . In other words, although F might
not necessarily imply the clause C itself, it implies all the conclusions that can be derived
with C via resolution upon one of its literals. We show that this suffices to ensure that C
is redundant with respect to F in first-order logic without equality.

Using implication modulo resolution, we lift various redundancy properties to first-order
logic without equality. These redundancy properties include blocked clauses (BC) [Kul99],
covered clauses (CC) [HJB10b], asymmetric tautologies (AT) [HJB10a], resolution asym-
metric tautologies (RAT) [JHB12], and resolution-subsumed clauses (RS) [JHB12]. None
of these redundancy properties have been available in first-order logic before.

Although in previous chapters we focused mainly on the addition of redundant clauses,
the elimination of redundant clauses can also significantly improve the performance of
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modern reasoning engines [HJL+15]. We therefore consider clause-elimination techniques
based on the lifted redundancy properties and analyze if they are confluent. Intuitively,
confluence of a technique tells us that the order in which we eliminate clauses from a
formula is not relevant to the final outcome of the elimination procedure.

After this, we present the principle of implication modulo flat resolution, a variant of
implication modulo resolution for first-order logic with equality. We show how the use
of implication modulo flat resolution yields a short soundness proof for the existing
preprocessing technique of predicate elimination [KK16]. Moreover, we use implication
modulo flat resolution to derive a variant of blocked clauses—called equality-blocked
clauses—that guarantees redundancy even in first-order logic with equality.

Finally, we present an application of blocked clauses and equality-blocked clauses in
first-order logic: a preprocessing tool that eliminates (equality) blocked clauses from
formulas to speed up first-order theorem provers. We present an empirical evaluation
showing that blocked-clause elimination is a beneficial preprocessing technique that can
significantly boost performance. Blocked-clause elimination is now part of the theorem
prover Vampire [KV13], which has won the FOF (First-Order Form theorems) division
of the CASC competition [SU16] for automated theorem proving each year since 2002.

5.1 First-Order Logic Without Equality

We assume the reader to be familiar with the basics of first-order logic. As usual,
formulas of a first-order language L are built using predicate symbols, function symbols,
and constants from some given denumerable alphabet together with logical connectives,
quantifiers, and variables. We use the letters P,Q,R, S, . . . as predicate symbols and the
letters f, g, h, . . . as non-constant function symbols. Moreover, we use the letters a, b, c, . . .
for constants and the letters x, y, z, u, v, . . . for variables (possibly with subscripts).

As in propositional logic, we consider formulas in conjunctive normal form, which are
defined as follows. An atom is an expression P (t1, . . . , tn) where P is a predicate symbol
of arity n and t1, . . . tn are terms built from constants, variables, and function symbols
as usual. Literals, clauses, and formulas are then defined analogously to propositional
logic, allowing atoms instead of only propositional variables: A literal is either an atom
(a positive literal) or the negation Ā of an atom A (a negative literal). A disjunction of
literals is a clause. A conjunction of clauses is a formula. An expression (i.e., a term,
literal, formula, etc.) is ground if it contains no variables. For a literal L, we define its
complement L̄ as Ā if L = A and as L̄ = A if L = Ā, where A is an atom. Without loss
of generality, clauses are assumed to be variable disjoint. Variables occurring in a CNF
formula are implicitly universally quantified. We treat CNF formulas as sets of clauses
and clauses as multisets of literals. A clause is a tautology if it contains both L and L̄ for
some literal L.

Regarding the semantics of first-order logic, we use the standard notions of interpretation,
model, validity, satisfiability, and logical equivalence. As in propositional logic, we say that
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two formulas are equisatisfiable if they are either both satisfiable or both unsatisfiable. A
propositional assignment is a mapping from ground atoms to the truth values 1 (true) and
0 (false). Accordingly, a set of ground clauses is propositionally satisfiable if there exists
a propositional assignment that satisfies F under the propositional semantics, treating
ground atoms like propositional variables.

A substitution is a mapping from variables to terms that agrees with the identity function
on all but finitely many variables. Let σ be a substitution. The domain dom(σ) of σ is the
set of variables for which σ(x) 6= x. The range ran(σ) of σ is the set {σ(x) | x ∈ dom(σ)}.
A substitution is ground if its range consists only of ground terms. Every substitution σ
can be extended to a mapping σ̂ over terms by defining σ̂(x) = σ(x) for variables x, and
σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)) for non-variable terms f(t1, . . . , tn). As common,
given an expression E, we write Eσ for σ̂(E). For instance, if σ = {x 7→ g(a)}, then
L(x, f(x))σ = L(g(a), f(g(a))). If Eσ is ground, it is a ground instance of E. The
composition στ of two substitutions is defined as xστ = τ̂(σ(x)) for all variables x.

A substitution σ is a unifier of the expressions E1, . . . , En if E1σ = · · · = Enσ. For
substitutions σ and τ , we say that σ is more general than τ if there exists a substitution
λ such that σλ = τ . Furthermore, σ is a most general unifier (mgu) of E1, . . . , En if, for
every unifier τ of E1, . . . , En, σ is more general than τ . It is well-known that whenever a
set of expressions is unifiable, there exists an idempotent most general unifier of this set.

We make use of a popular variant of Herbrand’s Theorem [Fit96]:

Theorem 37. A formula F is satisfiable if and only if every finite set of ground instances
of clauses in F is propositionally satisfiable.

Our notion of clause redundancy is analogous to the one we used in propositional logic:

Definition 34. A clause C is redundant with respect to a formula F if F and F ∧ C
are equisatisfiable.

The first-order notion of a resolvent involves most general unifiers:

Definition 35. Given two clauses C = L1∨· · ·∨Lk∨C ′ and D = N1∨· · ·∨Nl∨D′ such
that the literals L1, . . . , Lk, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ ∨D′σ
is a resolvent of C and D. If k = l = 1, it is a binary resolvent of C and D upon L1.

Unlike in propositional logic, there can exist multiple resolvents of two clauses upon a
single literal:

Example 25. Consider the clauses P (x)∨P (y)∨R(x, y) and P̄ (a)∨Q(a). The clauses
P (y)∨R(a, y)∨Q(a), P (x)∨R(x, a)∨Q(a), and R(a, a)∨Q(a) are resolvents. The first
two resolvents are binary resolvents whereas the third one is not.
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5.1.1 Implication Modulo Resolution

We can now proceed to define the principle of implication modulo resolution. The defini-
tion of implication modulo resolution relies on the notion of an L-resolvent. Intuitively,
an L-resolvent is obtained by resolving only upon a single literal of the left-hand clause:

Definition 36. Given two clauses C = L∨C ′ and D = N1 ∨ · · · ∨Nl ∨D′ such that the
literals L, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ∨D′σ is called L-resolvent
of C and D.

Example 26. Let C = P (x) ∨ P (a) ∨ Q(x, a), D = P̄ (y) ∨ P̄ (z) ∨ R(y, z), and let
L = P (x). Then, the substitution {y 7→ x, z 7→ x} is an mgu of P (x), P (y), and P (z).
Therefore, P (a) ∨ Q(x, a) ∨ R(x, x) is an L-resolvent of C and D. Also the resolvent
P (a)∨Q(x, a)∨ P̄ (z)∨R(x, z), obtained by using the mgu {y 7→ x} of P (x) and P (y) is
an L-resolvent of C and D. However, the resolvent Q(a, a) ∨R(a, a), obtained by using
the mgu {x 7→ a, y 7→ a, z 7→ a} of P (x), P (a), P (y), and P (z) is not an L-resolvent as
it resolves away the literal P (a) from the left-hand clause C.

Before we next define the principle of implication modulo resolution, we want to highlight
that whenever we say that a formula F implies a clause C, we mean that every model of
F is a model of C, that is, F |= C.

Definition 37. A clause C is implied modulo resolution by a formula F if C contains
a literal L such that all L-resolvents of C, with clauses in F , are implied by F .

We say that C is implied modulo resolution upon L by F . A simple example for clauses
that are implied modulo resolution are clauses with pure literals. A pure literal is a literal
whose predicate symbol occurs in only one polarity in the whole formula. Since there
are no resolvents upon such a literal, the containing clause is trivially implied modulo
resolution. The following example is a little more involved:

Example 27. Let C = P (x) ∨Q(x) and

F = {P̄ (y) ∨R(y), R(z) ∨ S(z), S̄(u) ∨Q(u)}.

There is one P (x)-resolvent of C, namely Q(x) ∨ R(x), obtained by resolving C with
P̄ (y)∨R(y). Clearly, this resolvent is implied by the clauses R(z)∨S(z) and S̄(u)∨Q(u).
Therefore, F implies C modulo resolution upon P (x).

In the following, we prove that implication modulo resolution ensures redundancy, i.e.,
if a clause C is implied modulo resolution by a formula F , then C is redundant with
respect to F . In the proof, we use Herbrand’s Theorem (Theorem 37), which tells us
that a formula F is satisfiable if and only if all finite sets of ground instances of clauses
in F are propositionally satisfiable.

To prove that the satisfiability of F implies the satisfiability of F ∧ C, we proceed as
follows: Given a finite set of ground instances of clauses in F ∧ C, we can obtain a
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satisfying propositional assignment of this set from an assignment that satisfies all the
ground instances of clauses in F . The latter assignment is guaranteed to exist because
F is satisfiable. The key idea behind the modification of this assignment is to flip the
truth values of certain (ground) literals, just as we did in propositional logic in previous
chapters. We illustrate this on the following example:

Example 28. Consider again C and F from Example 27 and let C ′ = P (a) ∨Q(a) be a
ground instance of C. Let furthermore F ′ = {P̄ (a) ∨R(a), R(a) ∨ S(a), S̄(a) ∨Q(a)} be
a finite set of ground instances of F (in fact, F ′ is even a ground instance of F ). Clearly,
F ′ is propositionally satisfied by the assignment α = P̄ (a)R(a)S̄(a)Q̄(a), but α falsifies
C ′. However, we can turn α into a satisfying assignment of C ′ by flipping the truth
value of P (a)—the instance of the literal upon which C is implied modulo resolution. The
resulting assignment α′ = P (a)R(a)S̄(a)Q̄(a) could possibly falsify the clause P̄ (a)∨R(a)
since it contains P̄ (a), which is not satisfied anymore. But, P̄ (a) ∨R(a) stays true since
R(a) is satisfied by α′. Therefore, α′ satisfies F ′ ∧ C ′.

In the above example, it is not a coincidence that P̄ (a) ∨ R(a) is still satisfied after
flipping the truth value of P (a). The intuitive explanation is as follows: The clause
Q(a)∨R(a) is a ground instance of the P (x)-resolvent Q(x)∨R(x) of C and P̄ (y)∨R(y),
and we know that this resolvent is implied by F . Therefore, since α satisfies all the
ground instances of clauses in F , it should also satisfy Q(a) ∨R(a). But, since α does
not satisfy Q(a) (because α falsifies C ′ = P (a) ∨Q(a)), it must satisfy R(a), and so it
satisfies P̄ (a) ∨ R(a). Finally, since α′ disagrees with α only on P (a), it also satisfies
R(a). The following lemma formalizes this observation:

Lemma 38. Let C be a clause that is implied modulo resolution upon L by F , and let
α be an assignment that propositionally satisfies all ground instances of clauses in F
but falsifies a ground instance Cλ of C. Then, the assignment α′, obtained from α by
flipping the truth value of Lλ, still satisfies all ground instances of clauses in F .

Proof. Let Dτ be a ground instance of a clause D ∈ F and suppose α satisfies Dτ . If
Dτ does not contain L̄λ, it is trivially satisfied by α′. Assume therefore that L̄λ ∈ Dτ
and let N1, . . . , Nl be all the literals in D such that Niτ = L̄λ for 1 ≤ i ≤ l. Then, the
substitution λτ = λ ∪ τ (note that C and D are variable disjoint by assumption) is a
unifier of L, N̄1, . . . , N̄l. Hence, R = (C \ {L})σ ∨ (D \ {N1, . . . , Nl})σ, with σ being an
mgu of L, N̄1, . . . , N̄l, is an L-resolvent of C and thus implied by F .

As σ is most general, there exists a substitution γ such that σγ = λτ . Therefore,

(C \ {L})σγ ∨ (D \ {N1, . . . , Nl})σγ
= (C \ {L})λτ ∨ (D \ {N1, . . . , Nl})λτ
= (C \ {L})λ ∨ (D \ {N1, . . . , Nl})τ

is a ground instance of R and so it must be satisfied by α. Thus, since α falsifies
Cλ, it must satisfy a literal L′τ ∈ (D \ {N1, . . . , Nl})τ . But, as all the literals in
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(D \ {N1, . . . , Nl})τ are different from L̄λ, flipping the truth value of Lλ does not affect
the truth value of L′τ . It follows that α′ satisfies L′τ and thus it satisfies Dτ .

We can therefore satisfy a previously falsified ground instance Cλ of C without falsifying
ground instances of clauses in F , by flipping the truth value of Lλ—the ground instance
of the literal L upon which C is implied modulo resolution. Still, as the following example
shows, there could be other ground instances of C that contain the complement L̄λ of Lλ.
These ground instances can potentially be falsified when making Lλ true:

Example 29. Suppose a formula F implies a clause C = P̄ (x) ∨ P (f(x)) modulo
resolution upon P (f(x)) and consider the two ground instances C1 = P̄ (a)∨P (f(a)) and
C2 = P̄ (f(a)) ∨ P (f(f(a))) of C. The assignment P (a)P̄ (f(a))P̄ (f(f(a))) falsifies C1,
but we can satisfy C1 by flipping the truth value of P (f(a))—which is the ground instance
of P (f(x))—to obtain the assignment P (a)P (f(a))P̄ (f(f(a))). However, by flipping the
truth value of P (f(a)), we falsified the other ground instance C2 of C.

In the proof of Theorem 39 below, we show that this is actually not a serious problem.
The key idea is to repeatedly satisfy ground instances of the literal upon which the clause
is implied modulo resolution, until we finally obtain a satisfying assignment of all ground
instances of the clause. In the above example, for instance, we can continue by flipping
the truth value of P (f(f(a)) to obtain a satisfying assignment of both C1 and C2.

Theorem 39. If a formula F implies a clause C modulo resolution, then C is redundant
with respect to F .

Proof. Assume that F implies C modulo resolution upon L and that F is satisfiable. We
show that F ∧ C is satisfiable. By Herbrand’s theorem (Theorem 37), it suffices to show
that every finite set of ground instances of clauses in F ∧ C is propositionally satisfiable.
Let therefore F ′ and FC be finite sets of ground instances of clauses in F and {C},
respectively. Since F is satisfiable, there exists an assignment α that propositionally
satisfies all ground instances of clauses in F and thus it clearly satisfies F ′. Assume now
that α falsifies some ground instances of C that are contained in FC .

By Lemma 38, for every falsified ground instance Cλ of C, we can turn α into a satisfying
assignment of Cλ by flipping the truth value of Lλ, and this flipping does not falsify any
ground instances of clauses in F . The only clauses that could possibly be falsified are
other ground instances of C that contain the literal L̄λ. But, once an instance Lτ of
L is true in a ground instance Cτ of C, Lτ cannot (later) be falsified by making other
instances of L true. As there are only finitely many clauses in FC , we can therefore turn
α into a satisfying assignment of F ′ ∪ FC by repeatedly making ground instances of C
true by flipping the truth values of their instances of L, until all ground instances of C
are satisfied. We conclude that all finite sets of ground instances of clauses in F ∧ C are
propositionally satisfiable and so F ∧ C is satisfiable.
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For example, the clause C in Example 27 is redundant with respect to F since it is implied
modulo resolution by F . In what follows, we lift several redundancy properties from
propositional logic to first-order logic. Thereby, Theorem 39 will help us to prove their
redundancy. We start with blocked clauses, as both resolution asymmetric tautologies
and covered clauses (which we lift later) can be seen as generalizations of blocked clauses.

5.1.2 Blocked Clauses

We have discussed blocked clauses extensively before, in the section on locally redundant
clauses in propositional logic. Remember that in propositional logic, a clause C is blocked
in a formula F if it contains a literal such that all binary resolvents of C upon this literal
are tautologies. In first-order logic, we replace the notion of a binary resolvent by that of
an L-resolvent:

Definition 38. A clause C is blocked in a formula F if it contains a literal L such that
all L-resolvents of C, with clauses in F , are tautologies.

We say that C is blocked by L in F .

Example 30. Consider the clause C = P (x)∨ Q̄(x) and the formula F = {P̄ (y)∨Q(y)}.
There is only one P (x)-resolvent of C, namely the tautology Q̄(x) ∨Q(x), obtained by
using the mgu σ = {y 7→ x}. Therefore, C is blocked by P (x) in F .

As tautologies are trivially implied by every formula, blocked clauses are implied modulo
resolution. The redundancy of blocked clauses in first-order logic is therefore a consequence
of Theorem 39:

Theorem 40. If a clause is blocked in a formula F , it is redundant with respect to F .

5.1.3 Asymmetric Tautologies and RATs

We have already discussed the propositional notions of asymmetric tautologies and RATs
in Section 2.2.1 on page 19. Remember that an asymmetric tautology is a clause that can
be turned into a tautology by repeatedly adding asymmetric literals to it. In propositional
logic, a literal L is an asymmetric literal with respect to a clause C in a formula F if
there exists a clause D ∨ L̄ ∈ F such that D subsumes C, i.e., D ⊆ C. The addition of
an asymmetric literal L to a clause C yields a clause that is logically equivalent to C in
the sense that F |= C ↔ (C ∨ L) [HJB10a].

In first-order logic, a clause C subsumes a clause D if there exists a substitution λ such
that Cλ ⊆ D. This motivates the following first-order variants of asymmetric literals and
asymmetric tautologies:

Definition 39. A literal L is an asymmetric literal with respect to a clause C in a
formula F if there exist a clause D ∨K ∈ F and a substitution λ such that Dλ ⊆ C and
L = K̄λ.
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Example 31. Consider the formula F = {P (y) ∨ Q(y) ∨ S̄(y)} and the clause C =
P (x) ∨ Q(x) ∨ R(x). The literal S(x) is an asymmetric literal with respect to C in F
since, for λ = {y 7→ x}, (P (y) ∨Q(y))λ ⊆ C and S(x) = S(y)λ.

First-order asymmetric-literal addition is harmless insofar as the original clause C can be
obtained from C ∨ L and D ∨K via an application of the subsumption-resolution rule,
which—as the name suggests—combines subsumption and resolution [BG01]:

C ′ ∨Dλ ∨ K̄λ D ∨K
C ′ ∨Dλ

Clearly, the consequence of the subsumption-resolution rule is implied by its premises.
In case L is an asymmetric literal, we have that L = K̄λ and Dλ ⊆ C, hence C is of the
form C ′ ∨Dλ ∨ K̄λ and thus we can derive C = C ′ ∨Dλ from C ∨ L and D ∨K. We
thus get:

Lemma 41. Let F be a formula, C a clause, and L an asymmetric literal with respect
to C in F . Then, F |= C ↔ (C ∨ L).

As in propositional logic, an asymmetric tautology is a clause that can be turned into a
tautology by adding asymmetric literals (asymmetric-literal addition, ALA):

Definition 40. A clause C is an asymmetric tautology in a formula F if there exists a
sequence L1, . . . , Ln of literals such that C ∨ L1 ∨ · · · ∨ Ln is a tautology and each Li is
an asymmetric literal with respect to C ∨ L1 ∨ · · · ∨ Li−1 in F .

Example 32. Consider the formula F = {R(z) ∨ S(z), S̄(u) ∨ Q(u)} and the clause
C = Q(x) ∨R(x). The subclause R(z) of R(z) ∨ S(z) subsumes R(x) via {z 7→ x} and
so S̄(x) is an asymmetric literal with respect to C. We add it to C and obtain the clause
Q(x) ∨ R(x) ∨ S̄(x). After this, the subclause S̄(u) of S̄(u) ∨ Q(u) subsumes S̄(x) via
{u 7→ x} and thus Q̄(x) can be added to obtain the tautology Q(x) ∨R(x) ∨ S̄(x) ∨ Q̄(x).
We conclude that C is an asymmetric tautology in F .

Note that in automatic theorem proving, we prefer short clauses over long ones, since
the short clauses are usually stronger. Therefore, when performing asymmetric-tautology
elimination, the asymmetric-literal additions are not meant to be permanent: We first
add asymmetric literals and then test whether the resulting clause is a tautology. If
so, we remove the clause; if not, we undo the asymmetric-literal additions to shrink the
clause back to its original size. We next show that asymmetric tautologies are implied:

Theorem 42. If C is an asymmetric tautology in F , it is implied by F .

Proof. Suppose C is an asymmetric tautology in F , meaning that there exists a sequence
L1, . . . , Ln of literals such that C∨L1∨· · ·∨Ln is a tautology and each Li is an asymmetric
literal with respect to the clause C ∨ L1 ∨ · · · ∨ Li−1 in F . By the repeated application
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of Lemma 41 (an easy induction argument), it follows that F |= (C ↔ C ∨L1 ∨ · · · ∨Ln).
But then, since C∨L1∨· · ·∨Ln is a tautology, it trivially holds that F |= C∨L1∨· · ·∨Ln
and so F |= C.

Unlike in propositional logic, the first-order variant of asymmetric-literal addition is not
guaranteed to terminate. Consider the following example:

Example 33. Let C = P (a) and F = {P (x)∨P̄ (f(x))}. Then, since P (x) subsumes P (a)
via λ = {x 7→ a}, we can add the asymmetric literal P (f(a)) to obtain P (a) ∨ P (f(a)).
After this, we can add P (f(f(a)) via λ = {x 7→ f(a)}, then P (f(f(f(a)))) and so on.
This can be repeated infinitely many times.

A resolution asymmetric tautology in first-order logic is then a clause C that contains a
literal L such that all L-resolvents of C are asymmetric tautologies:

Definition 41. A clause C is a resolution asymmetric tautology (RAT) in a formula F
if it contains a literal L such that all L-resolvents of C, with clauses in F , are asymmetric
tautologies in F .

We say that C is a RAT on L in F .

Example 34. Consider the clause C = P (x) ∨ Q(x) and the following formula F =
{P̄ (y) ∨R(y), R(z) ∨ S(z), S̄(u) ∨Q(u)} (cf. Example 27). There is one P (x)-resolvent
of C, namely Q(x) ∨R(x), obtained by resolving with P̄ (y) ∨R(y). The formula F is a
superset of the formula from Example 32 in which Q(x)∨R(x) is an asymmetric tautology.
Thus, Q(x)∨R(x) is also an asymmetric tautology here: The subclause R(z) of the clause
R(z)∨S(z) subsumes R(x) via {z 7→ x} and so S̄(x) is an asymmetric literal with respect
to Q(x) ∨ R(x). We add it to C and obtain the clause Q(x) ∨ R(x) ∨ S̄(x). After this,
the subclause S̄(u) of S̄(u)∨Q(u) subsumes S̄(x) via {u 7→ x} and so Q̄(x) can be added
to obtain the tautology Q(x) ∨R(x) ∨ S̄(x) ∨ Q̄(x). It follows that C is a RAT in F .

Theorem 43. If a clause C is a RAT in a formula F , it is redundant with respect to F .

Proof. Assume that C is a RAT in F . Then, every L-resolvent of C with clauses in
F is an asymmetric tautology in F and therefore, by Theorem 42, implied by F . It
follows that C is implied modulo resolution upon L by F and thus, by Theorem 39, C is
redundant with respect to F .

5.1.4 Covered Clauses

In contrast to blocked clauses and resolution asymmetric tautologies, we haven’t discussed
covered clauses in previous chapters. We thus first discuss the notions of covered literals
and covered clauses from propositional logic and then lift them to the first-order level.
Informally, a clause C is covered in a propositional formula F if the addition of so-called
covered literals turns it into a blocked clause. A clause C covers a literal K in F if C
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contains a literal L such that all non-tautological resolvents of C upon L contain K.
The crucial property of covered literals is that they can be added to C without affecting
satisfiability [HJB10b]. More precisely, given a formula F , a clause C, and a literal K
that is covered by C in F , it holds that F ∧ C and F ∧ (C ∨K) are equisatisfiable.

Example 35. Consider the clause C = P and the formula F = {P̄ ∨ Q̄∨R, P̄ ∨ Q̄∨S}.
There are two resolvents of C upon P , namely Q̄∨R and Q̄∨S. As Q̄ is contained in both
resolvents, it is covered by C in F . Therefore, F ∧ P and F ∧ (P ∨ Q̄) are equisatisfiable.

We next introduce a first-order variant of covered literals. It is based on the notion of a
non-recursive literal:

Definition 42. A literal L is recursive in a clause C if C contains a literal K such that
K and L have the same predicate symbol but opposite polarity.

If C is clear from the context, we just say that L is recursive. If L is not recursive in C,
we say that it is non-recursive.

Example 36. The literal P̄ (x) is recursive in the clause P̄ (x) ∨ P (f(x)) ∨Q(x); it is
non-recursive in the clause P̄ (x) ∨ P̄ (f(x)) ∨Q(x).

Using the notion of a non-recursive literal, we can now define covered literals:

Definition 43. A clause C covers a literal K in a formula F if C contains a non-
recursive literal L such that all non-tautological L-resolvents of C, with clauses in F ,
contain K.

Note that our definition of covered literals implies that all the non-tautological L-resolvents
of C must contain exactly K, meaning that even the variable names occurring in K have
to be identical across all L-resolvents. Although there might be other generalizations of
covered literals which are not as restrictive, we adopt this definition due to its simplicity.

Example 37. Consider the clause C = P (f(x)) and the formula

F = {P̄ (y) ∨Q(y) ∨R(y), P̄ (z) ∨Q(z) ∨ S(z)}.

There are two P (f(x))-resolvents of C: Q(f(x)) ∨R(f(x)), obtained by using the mgu
{y 7→ f(x)}, and Q(f(x)) ∨ S(f(x)), obtained by using the mgu {z 7→ f(x)}. Since
Q(f(x)) is contained in both resolvents, it is covered by C in F .

As we will show below, the addition of a covered literal to the clause that covers it has
no effect on satisfiability in the sense that F ∧ C and F ∧ (C ∨K) are equisatisfiable.
The following example shows that this would not be the case if we did not require L to
be non-recursive:
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Example 38. Consider the clause C = P̄ (x) ∨ P (f(x)) and the formula

F = {P̄ (y) ∨Q(y), P (a), Q̄(f(f(a))}.

The literal Q(f(x)) is contained in the (only) P (f(x))-resolvent P̄ (x)∨Q(f(x)) of C with
clauses in F . However, F ∧ C is unsatisfiable whereas F ∧ (C ∨Q(f(x))) is satisfiable.

Lemma 44. If a clause C covers a literal K in a formula F , then F ∧C and F ∧ (C∨K)
are equisatisfiable.

Proof. Assume that C covers K in F , meaning that C contains a non-recursive literal
L such that K is contained in all non-tautological L-resolvents of C with clauses in F .
First, we add (Cτ ∨Kτ) to F ∧ C, with τ being a renaming that replaces the variables
in (C ∨K) by fresh variables not occurring in F . Since (Cτ ∨Kτ) is subsumed by C,
the formulas F ∧ C and F ∧ C ∧ (Cτ ∨Kτ) are equisatisfiable. We next show that C is
redundant with respect to F ∧ (Cτ ∨Kτ) and that it can therefore by removed without
affecting the satisfiability status. To do so, we show that F ∧(Cτ ∨Kτ) implies C modulo
resolution upon L. As F ∧ (Cτ ∨Kτ) and F ∧ (C ∨K) are clearly equivalent, the claim
then follows.

We have to show that all L-resolvents of C with clauses in F are implied by F ∧(Cτ ∨Kτ)
(note that we do not need to consider L-resolvents with (Cτ ∨ Kτ) since the non-
recursiveness of L implies that such resolvents do not exist). Since tautological L-
resolvents are trivially implied, we consider only non-tautological ones. Let C ′σ ∨D′σ be
a non-tautological L-resolvent of C = C ′ ∨ L with a clause D = D′ ∨N1 ∨ · · · ∨Nk ∈ F ,
where σ is an (idempotent) mgu of the literals L, N̄1, . . . , N̄k. Since K is covered by C
in F , the resolvent C ′σ ∨ D′σ contains K, and K is of the form Pσ for some literal
P ∈ C ′ ∨D′.

To prove that C ′σ ∨D′σ is implied by F ∧ (Cτ ∨Kτ), we show that it can be obtained
from clauses in F ∧ (Cτ ∨Kτ) via resolution, substitution, and factoring: Consider the
clauses (Cτ ∨Kτ) = (C ′τ ∨ Lτ ∨Kτ) and D = (D′ ∨N1 ∨ · · · ∨Nk). Since the literals
L, N̄1, . . . , N̄k are unified by σ and since dom(τ−1) ∩ var(D) = ∅, it follows that Lτ
and N̄1, . . . , N̄k are unified by τ−1σ (note that the inverse function τ−1 of τ is a valid
substitution since ran(τ) consists only of fresh variables). Therefore, there exists an
mgu σ′ of Lτ and N̄1, . . . , N̄k. Hence, the clause (C ′τ ∨Kτ ∨D′)σ′ is an Lτ -resolvent of
(Cτ ∨Kτ) and D. Now, since σ′ is most general, there exists a substitution γ such that
σ′γ = τ−1σ. But then,

(C ′τ ∨Kτ ∨D′)σ′γ
= (C ′τ ∨Kτ ∨D′)τ−1σ

= (C ′σ ∨Kσ ∨D′σ),

from which we obtain (C ′σ ∨D′σ) by factoring, since K ∈ C ′σ ∨D′σ and Kσ = Pσσ =
Pσ = K (note that D′τ−1 = D′ since var(D′) ∩ var(τ−1) = ∅). We conclude that
F ∧ (Cτ ∨Kτ) implies C modulo resolution upon L.
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Similar to asymmetric-literal addition, the addition of covered literals in first-order logic
is also not guaranteed to terminate. Consider the following example:

Example 39. Let C = P (a) and F = {P̄ (x) ∨ P (f(x))}. Then, there exists one
P (a)-resolvent of C, namely P (f(a)). Therefore, P (f(a)) is covered by C and thus it
can be added to C to obtain P (a) ∨ P (f(a)). Now, there is one P (f(a))-resolvent of
P (a) ∨ P (f(a)), namely P (a) ∨ P (f(f(a))), and thus P (f(f(a))) can be added. This
addition of covered literals can be repeated infinitely often.

A clause C is then covered in a formula F if the repeated addition of covered literals can
turn it into a blocked clause:

Definition 44. A clause C is covered in a formula F if there exists a sequence K1, . . . ,Kn

of literals such that each Ki is covered by C ∨K1 ∨ · · · ∨Ki−1 in F and C ∨K1 ∨ · · · ∨Kn

is blocked in F .

Example 40. Consider the formula F = {P̄ (y) ∨ R(y), R̄(z) ∨ Q(z)} and the clause
C = P (a) ∨ Q̄(a). Although C is not blocked in F , we can add the literal R(a) since
it is contained in its only P (a)-resolvent, obtained by resolving with P̄ (y) ∨R(y). The
resulting clause P (a)∨Q̄(a)∨R(a) is then blocked by R(a) as there is only the tautological
R(a)-resolvent P (a) ∨ Q̄(a) ∨Q(a), obtained by resolving with R̄(z) ∨Q(z). Thus, C is
covered in F .

Theorem 45. If a clause C is covered in a formula F , it is redundant with respect to F.

Proof. Suppose C is covered in F , meaning that we can add covered literals to C to
obtain a clause C ∨ K1 ∨ · · · ∨ Kn that is blocked in F . By Lemma 44, F ∧ C and
F ∧ (C ∨K1 ∨ · · · ∨Kn) are equisatisfiable. Moreover, since C ∨K1 ∨ · · · ∨Kn is blocked
in F , it follows that F and F ∧ (C ∨K1 ∨ · · · ∨Kn) are equisatisfiable. But then F and
F ∧ C are equisatisfiable and so C is redundant with respect to F .

5.1.5 Resolution-Subsumed Clauses and More

The redundancy property of resolution-subsumed clauses (RS), which is used in SAT
solving and which we already encountered briefly on page 33, can also be straightforwardly
lifted to first-order logic, where redundancy is again an immediate consequence of
Theorem 39 since subsumption ensures implication:

Definition 45. A clause C is resolution subsumed in a formula F if it contains a literal
L such that all non-tautological L-resolvents of C, with clauses in F , are subsumed in F .

Note that resolution-subsumed clauses are different from clauses derived via the sub-
sumption-resolution rule mentioned on page 5.1.3.

Theorem 46. If a clause is resolution subsumed in a formula F , then it is redundant
with respect to F .
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ALA Resolution Look-Ahead Tautology CheckCLA ALA Subsumption Check

Figure 5.1: Combination of Techniques to Obtain Redundancy Properties.

With the methods presented so far, we can lift even more redundancy properties that have
been considered in the SAT literature. We can do so by combining asymmetric-literal
addition or covered-literal addition with tautology or subsumption checks. These checks
can be performed either directly on the clause or for all resolvents of the clause upon
one of its literals. The latter can be seen as some kind of “look-ahead” via resolution.
Figure 5.1 illustrates possible combinations of techniques. Every path from the left to
the right gives rise to a particular redundancy property. Remember that ALA stands for
asymmetric-literal addition and CLA stands for covered-literal addition.

For instance, to detect if a clause is an asymmetric tautology, we first perform some
asymmetric-literal additions and then check if the resulting clause is a tautology. Another
example are blocked clauses, where we ask if all L-resolvents of the clause are tautologies.
Similarly, we obtain covered clauses, resolution-subsumed clauses, and resolution asym-
metric tautologies via such combinations. This gives rise to various other types of clauses
like asymmetric blocked clauses, asymmetric subsumed clauses [JHB12], or asymmetric
covered clauses [HJL+15]. The redundancy of these clauses follows from the results in
this chapter, most importantly from the principle of implication modulo resolution.

5.1.6 Confluence Properties of Elimination Techniques

In this section, we consider clause-elimination techniques based on the previously lifted
redundancy notions and analyze their confluence. We also analyze confluence properties
of the corresponding literal-addition techniques. Intuitively, confluence of a technique
tells us that the order in which we perform the clause eliminations or the literal additions
is not relevant to the final outcome of the technique.

Our notion of redundancy from Definition 34 says that a clause C is redundant with
respect to a formula F if F and F ∧ C are equisatisfiable. This means that if a clause D
is contained in F , we can safely eliminate D from F if D is redundant with respect to
F \ {D}, since then F and F \ {D} are guaranteed to be equisatisfiable. The redundancy
properties of the previous sections therefore give rise to corresponding clause elimination
techniques.

To analyze confluence of these techniques formally, we interpret them as abstract reduction
systems [BN98]. For instance, to analyze the confluence of a clause-elimination technique
CE, we define the (reduction) relation →CE over formulas as follows: F1 →CE F2 if and
only if the technique CE allows us to obtain F2 from F1 by removing a clause. Likewise,
for a literal-addition technique LA, we define the relation →LA over clauses as C1 →LA C2
if and only if the technique LA allows us to obtain C2 from C1 by adding a literal. Hence,
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when we ask if a certain preprocessing technique is confluent, what we actually want to
know is whether its corresponding reduction relation is confluent [BN98]:

Definition 46. Let → be a relation and →∗ its reflexive transitive closure. Then, → is
confluent if, for all x, y1, y2 with x→∗ y1 and x→∗ y2, there exists an element z such
that y1 →∗ z and y2 →∗ z.

In our context, this means that whenever the elimination of certain clauses from a formula
F yields a formula F1, and the elimination of certain other clauses from F yields another
formula F2, then there is still a formula Fz that we can obtain from both F1 and F2.
Likewise for the addition of literals to a clause. Therefore, if an elimination technique is
confluent, we do not need to worry about “missed opportunities” caused by a bad choice
of the elimination order. For some techniques in this thesis, we can show the stronger
diamond property, which implies confluence [BN98]:

Definition 47. A relation → has the diamond property if, for all x, y1, y2 with x→ y1
and x→ y2, there exists a z such that y1 → z and y2 → z.

We start with analyzing the confluence of blocked-clause elimination, which actually enjoys
the diamond property. Define the relation →BCE over formulas as follows: F →BCE G iff
G = F \ {C} and C is blocked in G.

Theorem 47. Blocked-clause elimination is confluent, i.e., →BCE is confluent.

Proof. If a clause C is blocked in a formula F , it is also blocked in every subset G of F ,
since the L-resolvents of C with clauses in G are a subset of the L-resolvents with clauses
in F . Therefore, if all L-resolvents of C with clauses in F are tautologies, so are those
with clauses in G. Hence, the relation →BCE clearly has the diamond property and thus
it is confluent.

As in the propositional case, where covered-clause elimination is confluent [HJL+15], we
can prove the confluence of its first-order variant. Define F →CCE G iff G = F \ {C} and
C is covered in G.

Theorem 48. Covered-clause elimination is confluent, i.e., →CCE is confluent.

Proof. We show that→CCE has the diamond property. Let F1 be obtained from a formula
F by removing a literal C that is covered in F \ {C} and let F2 be obtained from F
by removing a literal D that is covered in F \ {D}. It suffices to prove that both C
and D are covered in F \ {C,D}. We show that C is covered in F \ {C,D}. The other
case is symmetric. Since C is covered in F \ {C}, we can perform a sequence of n ≥ 0
covered-literal additions where every literal Ki is covered by Ci−1 = C ∨K1 ∨ · · · ∨Ki−1
in F \ {C} and Cn = C ∨K1 ∨ · · · ∨Kn is blocked in F \ {C}.
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Now, if in F \ {C,D}, the clause Cn can be obtained from C by performing the same
sequence of covered-literal additions, then Cn is also blocked in F \ {C,D}, which implies
that C is covered in F \ {C,D}. Assume now to the contrary that there exists a literal
Ki that is not covered by Ci−1 in F \ {C,D} and suppose without loss of generality that
Ki is the first such literal. It follows that there exists a non-tautological L-resolvent of
Ci−1 (with a clause in F \ {C,D}) that does not contain Ki. But then Ki is not covered
by Ci−1 in F \ {C}, a contradiction.

Covered-literal addition is confluent as well. Let F be a formula and define C1 →CLA C2
iff C2 can be obtained from C1 by adding a literal K that is covered by C1 in F .

Theorem 49. Covered-literal addition is confluent, i.e., →CLA is confluent.

Proof. We show that the relation →CLA has the diamond property. Let F be formula
and C a clause. Let furthermore C1 = C ∨K1 and C2 = C ∨K2 be obtained from C by
respectively adding literals K1 and K2 that are both covered by C in F . We have to show
that C1 covers K2 and, analogously, that C2 covers K1. Since C covers K2, it follows
that C contains a literal L such that K2 is contained in all non-tautological L-resolvents
of C. But, as L ∈ C1, every non-tautological L-resolvent of C1 must also contain K2. It
follows that C1 covers K2. The argument for K1 being covered by C2 is symmetric.

Asymmetric-literal addition is also confluent. Let F be a formula and define C1 →ALA C2
iff C2 can be obtained from C1 by adding a literal L that is an asymmetric literal with
respect to C1 in F .

Theorem 50. Asymmetric-literal addition is confluent, i.e., →ALA is confluent.

Proof. If L1 is an asymmetric literal with respect to a clause C in a formula F , then there
exists a clause D ∨ L̄ ∈ F and a substitution λ such that Dλ ⊆ C and L1 = L̄λ. Thus,
Dλ ⊆ C ∨ L2 for each C ∨ L2 that was obtained from C by adding some asymmetric
literal L2, and so L1 is an asymmetric literal with respect to every such clause. Hence,
→ALA has the diamond property and so it is confluent.

For asymmetric-tautology elimination, the non-confluence result from propositional
logic [HJL+15] implies non-confluence of the first-order generalization. Finally, the
following example shows non-confluence for both the elimination of resolution-subsumed
clauses (RS) and the elimination of resolution asymmetric tautologies (RAT):

Example 41. Let F = {P ∨ Q̄, Q ∨ R̄, P̄ ∨R, Q̄ ∨R}. Then, Q̄ ∨R is a RAT and RS
on the literal R in F \ {Q̄ ∨ R} as there is only one R-resolvent, namely the tautology
Q̄ ∨ Q, obtained by resolving with Q ∨ R̄. If we remove Q̄ ∨ R from F , none of the
remaining clauses of F is a RAT or RS with respect to the other remaining clauses.
In contrast, suppose we start by removing P ∨ Q̄, which is a RAT and RS on P with
respect to F \ {P ∨ Q̄}, then all the other clauses can afterwards be removed, because
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Technique Confluent
Blocked-Clause Elimination yes
Covered-Clause Elimination yes
Asymmetric-Tautology Elimination no
Resolution-Asymmetric-Tautology Elimination no
Resolution-Subsumed-Clause Elimination no
Covered-Literal Addition yes
Asymmetric-Literal Addition yes

Table 5.1: Confluence Properties of First-Order Clause-Elimination Techniques.

they become blocked with respect to the other clauses, implying that they are RAT and RS:
The clause R̄ ∨Q becomes blocked by the literal Q as there is only a tautological resolvent
upon Q, namely R̄ ∨ R. For P̄ ∨ R, there are no resolvents upon P̄ and so it trivially
becomes blocked by P̄ . Finally, Q̄ ∨R becomes blocked by both R and Q̄ as there are only
tautological resolvents upon these two literals.

A summary of the confluence results is given in Table 5.1.

5.2 First-Order Logic With Equality
All the previously mentioned redundancy properties only guarantee redundancy in first-
order logic without equality. In the following, we present a variant of implication modulo
resolution that also guarantees redundancy in first-order logic with equality. We obtain
first-order logic with equality by adding a distinct predicate symbol ≈ that must be
interpreted by the identity relation over the domain under consideration.

It is well known that if we consider a set EL of equality axioms (see below), then a formula
F that contains the equality predicate is satisfiable if and only if F ∪ EL is satisfiable
without the restriction that ≈ must be interpreted as the identity relation. The equality
axioms EL denote the following set of clauses for the language L under consideration (we
write x 6≈ y to denote a literal of the form ¬x ≈ y) :

(E1) x ≈ x;

(E2) x 6≈ y ∨ y ≈ x;

(E3) x 6≈ y ∨ y 6≈ z ∨ x ≈ z;

(E4) for each n-ary function symbol f in L,
x1 6≈ y1 ∨ · · · ∨ xn 6≈ yn ∨ f(x1, . . . , xn) ≈ f(y1, . . . , yn);

(E5) for each n-ary predicate symbol P in L,
x1 6≈ y1 ∨ · · · ∨ xn 6≈ yn ∨ P̄ (x1, . . . , xn) ∨ P (y1, . . . , yn).
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The previous variant of Herbrand’s Theorem (Theorem 37) does not hold in the presence
of equality, but the following variant does:

Theorem 51. A formula F that contains the equality predicate is satisfiable if and only
if every finite set of ground instances of clauses in F ∪ EL is propositionally satisfiable.

In the following, we introduce a variant of implication modulo resolution, called implication
modulo flat resolution, that ensures redundancy in first-order logic with equality. We
then show how implication modulo flat resolution gives a short correctness proof of the
predicate-elimination technique by Khasidashvili and Korovin [KK16]. We also introduce
so-called equality-blocked clauses, a variant of blocked clauses that is redundant in first-
order logic with equality. Finally, we discuss and evaluate a practical application of
blocked clauses, namely blocked-clause elimination as a preprocessing step for first-order
theorem provers. Defining appropriate equality variants for other redundancy properties
such as covered clauses and resolution asymmetric tautologies is part of our future work.

5.2.1 Implication Modulo Flat Resolution

Implication modulo resolution ensures redundancy in first-order logic without equality.
In the presence of equality, however, redundancy is not guaranteed:

Example 42. Let C = P (a) and F = {a ≈ b, P̄ (b)}. Since P (a) and P (b) are not
unifiable, there are no resolvents of C, hence F trivially implies C modulo resolution.
But, F is clearly satisfiable whereas F ∧ C is not.

In the example, models of F must assign the same truth value to P (a) and P (b). Hence,
when trying to turn a model of F into one of F ∧ C by flipping the truth value of P (a),
we also need to flip the truth value of P (b) although P (a) and P (b) are not unifiable.

Thus, to ensure redundancy in the presence of equality, it is not enough to consider only
the clauses that are L-resolvable with C. We need to take all clauses that contain a
literal of the form L̄(. . . ) into account. To do so, we make use of flattening [CP86]:

Definition 48. Let C = L(t1, . . . , tn)∨C ′ be a clause. Flattening the literal L(t1, . . . , tn)
in C yields the clause C− =

∨
1≤i≤n xi 6≈ ti ∨ L(x1, . . . , xn) ∨ C ′, with xi, . . . , xn being

fresh variables.

Example 43. Flattening the literal P (f(x), c, c) in the clause P (f(x), c, c) ∨Q(c) yields
the new clause x1 6≈ f(x) ∨ x2 6≈ c ∨ x3 6≈ c ∨ P (x1, x2, x3) ∨Q(c).

To see that flattening preserves equivalence, observe that the clause resulting from
flattening L(t1, . . . , tn) in L(t1, . . . , tn) ∨ C ′ is equivalent to an implication of the form
(x1 ≈ t1 ∧ · · · ∧ xn ≈ tn)→ (L(x1, . . . , xn) ∨ C ′). We can now define flat resolvents, which
are obtained by first flattening literals and then resolving upon them, which allows us to
resolve upon literals that are otherwise not unifiable:
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Definition 49. Let C = L∨C ′ and D = N1 ∨ · · · ∨Nk ∨D′ (with k > 0) be clauses such
that the literals L, N̄1, . . . , N̄k have the same predicate symbol and polarity. Let furthermore
C− and D− be obtained from C and D, respectively, by flattening L,N1, . . . , Nk, and
denote the flattened literals by L−, N−1 , . . . , N

−
k . The resolvent

(C− \ {L−})σ ∨ (D− \ {N−1 , . . . , N
−
k })σ

of C− and D−, with σ being an mgu of L−, N̄−1 , . . . , N̄
−
k , is a flat L-resolvent of C

and D.

Note that after flattening, the literals L−, N̄−1 , . . . , N̄
−
k are of the form L(x1, . . . , xn),

N̄1(y11, . . . , y1n), . . . , N̄k(yk1, . . . , ykn), respectively. As these literals contain only vari-
ables, they are easily unified by the unifier

⋃k
i=1{yij 7→ xj | 1 ≤ j ≤ n}, which maps every

variable at the j-th position to the variable xj . This unifier is in fact a most general
unifier (c.f. [BN98]). We will make use of this fact later on in the proof of Lemma 52.
The following example illustrates flat resolvents:

Example 44. Consider again the clause C = P (a) and the formula F = {a ≈ b, P̄ (b)}
from Example 42 and let D = P (b). By flattening P (a) in C and P̄ (b) in D we
obtain C− = x1 6≈ a ∨ P (x1) and D− = y1 6≈ b ∨ P̄ (y1), respectively. Their resolvent
x1 6≈ a ∨ x1 6≈ b is a flat P (a)-resolvent of C and D.

Using flat resolution, we can now define the principle of implication modulo flat resolution,
which guarantees redundancy even in first-order logic with equality:

Definition 50. A clause C is implied modulo flat resolution by a formula F if it contains
a literal L such that the predicate of L is not ≈ and all flat L-resolvents of C, with clauses
in F , are implied by F .

To prove the redundancy of clauses that are implied modulo flat resolution, we first define
the notion of equivalence flipping. Intuitively, equivalence flipping of a ground literal
L(t1, . . . , tn) turns a propositional assignment α into an assignment α′ by inverting not
only the truth value of L(t1, . . . , tn) but also the truth values of all literals L(s1, . . . , sn)
for which α satisfies the equalities t1 ≈ s1, . . . , tn ≈ sn.

Definition 51. Let α be a propositional assignment and let L(t1, . . . , tn) be a ground
literal with predicate symbol P other than ≈. The assignment α′, obtained by equivalence
flipping the truth value of L(t1, . . . , tn), is defined as follows:

α′(A) =
{

1− α(A) if A = P (s1, . . . , sn) and α(ti ≈ si) = 1 for all 1 ≤ i ≤ n,
α(A) otherwise.

Clearly, equivalence flipping preserves the truth of instances of the equality axioms. We
can now prove Lemma 52 below, which is the equality-variant of Lemma 38 on page 73.
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Lemma 52. Let C be implied modulo flat resolution upon L by F , and let α be a
propositional assignment that satisfies all ground instances of F ∪EL but falsifies a ground
instance Cλ of C. Then, the assignment α′, obtained from α by equivalence flipping the
truth value of Lλ, still satisfies all ground instances of clauses in F ∪ EL.

Proof. Let L = L(t1, . . . , tn) and C = L ∨ C ′ and suppose α falsifies a ground instance
Cλ of C. Now obtain α′ from α by equivalence flipping the truth value of L(t1, . . . , tn)λ.
Since equivalence flipping does not affect the equality axioms, α′ could only possibly falsify
clauses of the form Dτ where D ∈ F and L̄(s1, . . . , sn)τ ∈ Dτ such that α(tiλ ≈ siτ) = 1
for 1 ≤ i ≤ n.

Let Dτ be such a clause and let L̄(s1, . . . , sn), . . . , L̄(r1, . . . , rn) be the literals of D such
that α satisfies the equalities tiλ ≈ siτ ,. . . , tiλ ≈ riτ for 1 ≤ i ≤ n. To simplify the
presentation, we assume that L̄(s1, . . . , sn) and L̄(r1, . . . , rn) are the only such literals
(for another number of such literals, the proof is analogous). We show that α′ satisfies Dτ .
First, observe that D is of the form L̄(s1, . . . , sn) ∨ L̄(r1, . . . , rn) ∨D′.

As F implies C modulo flat resolution upon L(t1, . . . , tn), all flat L(t1, . . . , tn)-resolvents
of C are implied by F . Therefore, the particular flat L(t1, . . . , tn)-resolvent

R = (C ′ ∨D′ ∨
∨

1≤i≤n
xi 6≈ ti ∨ yi 6≈ si ∨ zi 6≈ ri)σ

is implied by F , where σ is an mgu of the literals L(x1, . . . , xn), L(y1, . . . , yn), and
L(z1, . . . , zn), which were obtained by respectively flattening L(t1, . . . , tn), L̄(s1, . . . , sn),
and L̄(r1, . . . , rn). Assume w.l.o.g. that σ = {yi 7→ xi | 1 ≤ i ≤ n}∪{zi 7→ xi | 1 ≤ i ≤ n}.
Then,

R = C ′ ∨D′ ∨
∨

1≤i≤n
xi 6≈ ti ∨ xi 6≈ si ∨ xi 6≈ ri.

As R is implied by F , the assignment α must satisfy all ground instances of R. Consider
therefore the following substitution γ that yields a ground instance Rγ of R:

γ(x) =


tiλ if x ∈ {x1, . . . , xn},
xλ if x ∈ var(C),
xτ if x ∈ var(D).

We observe that the ground instance Rγ of R is the clause

C ′λ ∨D′τ ∨
∨

1≤i≤n
tiλ 6≈ tiλ ∨ tiλ 6≈ siτ ∨ tiλ 6≈ riτ

which must be satisfied by α. Now, the inequalities of the form tiλ 6≈ tiλ are clearly
falsified by α. Furthermore, by assumption, α falsifies all the inequalities tiλ 6≈ siτ and
tiλ 6≈ riτ as well as C ′λ. But then α must satisfy at least one of the literals in D′τ .
Since none of the literals in D′τ can be affected by equivalence flipping the truth value
of Lλ (as D′ does not contain a literal of the form L̄(. . . )), D′τ must be satisfied by α′.
It follows that α′ satisfies Dτ .
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Using Lemma 52 instead of Lemma 38, and using the equality variant of Herbrand’s
Theorem (Theorem 51), the proof of redundancy for implication modulo flat resolution is
analogous to the proof of Theorem 39. We thus get:

Theorem 53. If a formula F implies a clause C modulo flat resolution, then C is
redundant with respect to F .

5.2.2 Predicate Elimination

The principle of implication modulo flat resolution allows us to construct a short soundness
proof for the predicate-elimination technique of Khasidashvili and Korovin [KK16].
Predicate elimination is a first-order variant of variable elimination, which is successfully
used during preprocessing and inprocessing in SAT solving [EB05].

The elimination of a predicate P from a formula F is computed as follows: First, we
add to F all flat resolvents upon literals with predicate symbol P . After this, we remove
all original clauses that contain P . To guarantee that this procedure does not affect
satisfiability, Khasidashvili and Korovin require P to be non-self-referential, meaning that
it must not occur more than once per clause. Note that their notion of a self-referential
predicate differs from our notion of a recursive literal, which we used in the context of
covered clauses. The following statement holds in first-order logic with equality:

Theorem 54. If a formula G is obtained from a formula F by eliminating a non-self-
referential predicate P , then F and G are equisatisfiable.

Proof. Let FP be obtained from F by adding all flat resolvents upon P . Clearly, FP and
F are equivalent. Now, let C be a clause that contains a literal L with predicate symbol P .
Then, FP contains all flat L-resolvents of C with clauses in FP \ {C}, which means that
FP \ {C} implies C modulo flat resolution. We can thus remove C from FP without
affecting satisfiability. Hence, we can remove all clauses that contain the predicate P
until we obtain the formula G. We conclude that F and G are equisatisfiable.

As mentioned by Khasidashvili and Korovin, the negative equalities (i.e., equalities of
the form x 6≈ t) introduced by flattening can be eliminated again afterwards, using
the equivalence-preserving rule of equality substitution. Equality substitution replaces a
clause of the form (C ∨ x 6≈ t) by the clause C[t/x], obtained from C by replacing all
occurrences of x by t.

We want to highlight that this variant of predicate elimination is sound in first-order
logic with equality. In first-order logic without equality, we can avoid the flattening and
just add ordinary binary resolvents. The soundness proof is analogous to the one above,
using implication modulo resolution instead of implication modulo flat resolution.
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5.2.3 Equality-Blocked Clauses

The principle of implication modulo flat resolution allows us to define a blocked-clause
notion that guarantees redundancy in the presence of equality; we call these clauses
equality-blocked clauses (note that here we require resolvents to be valid instead of being
tautological, thereby also including clauses such as x 6≈ y ∨ x 6≈ z ∨ y ≈ z):

Definition 52. A clause C is equality-blocked in a formula F if C contains a literal L
such that the predicate of L is not ≈ and all flat L-resolvents of C with clauses in F are
valid.

We say that C is equality-blocked by L in F . Note that a flat L-resolvent R is valid if
and only if the negation of its universal closure ¬∀x1 . . . ∀xnR, where x1, . . . xn are the
variables occurring in R, is unsatisfiable. Skolemization (which introduces fresh constants
for the variables of R) turns the formula ¬∀x1 . . . ∀xnR into a conjunction of ground
(equational) literals, which can be efficiently decided by a congruence-closure algorithm
like the one by Shostak [Sho78].

Since valid clauses are trivially implied, equality-blocked clauses are implied modulo flat
resolution. We thus get:

Theorem 55. If a clause is equality-blocked in a formula F , it is redundant with respect
to F .

The following example stems from a first-order encoding of an AI-benchmark problem
known as “Who killed Aunt Agatha?” [Pel86]:

Example 45. Consider the formula F = {L(a), L(b), L(c), L̄(x)∨x ≈ a∨x ≈ b∨x ≈ c}.
Intuitively, the clauses L(a), L(b), and L(c) encode that there are three living individuals:
Agatha, Butler, and Charles. The clause L̄(x) ∨ x ≈ a ∨ x ≈ b ∨ x ≈ c encodes that these
three individuals are the only living individuals. We can observe that all four clauses are
equality-blocked with respect to the other clauses of F . For instance, let C = L(a). There
exists one flat L(a)-resolvent of C: the valid clause x1 6≈ a∨x1 6≈ x∨x ≈ a∨x ≈ b∨x ≈ c,
obtained by resolving the clauses x1 6≈ a∨L(x1) and y1 6≈ x∨ L̄(y1)∨x ≈ a∨x ≈ b∨x ≈ c.

Finally, note that regarding confluence, the argument showing that blocked-clause
elimination is confluent carries over to equality-blocked clauses.

5.3 Blocked-Clause Elimination in Practice

In this section, we present the implementation and evaluation of a first-order preprocessing
tool that performs blocked-clause elimination (BCE). We further discuss how BCE
eliminates pure predicates and how it is related to the existing preprocessing technique
of unused-definition elimination (UDE) by Hoder et al. [HKKV12].
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5.3.1 Implementation

We implemented blocked-clause elimination for first-order logic as a preprocessing step
in the automated theorem prover Vampire [KV13].1 Depending on whether or not the
formula at hand contains the equality predicate, Vampire performs either the elimination
of equality-blocked clauses or the elimination of blocked clauses. The elimination is
performed as the last step in the preprocessing pipeline, because it relies on the input
being in CNF. After the preprocessing, instead of proceeding to proving the formula—
which is the default behavior—Vampire can be instructed to output the final set of
clauses.

The top level organization of our elimination procedure is inspired by the approach
adopted in the propositional case by Järvisalo et al. [JBH10]. For efficiency, we maintain
an index for accessing a literal within a clause by its predicate symbol and polarity. The
main data structure is a priority queue of candidates (L,C) where C is a clause that is
potentially blocked by the literal L in the formula under consideration. We prioritize
for processing those candidates (L,C) which have fewer potential resolution partners,
estimated by the number of clauses indexed with the same predicate symbol and the
opposite polarity as L.

At the beginning, every (non-equational) literal L in a clause C gives rise to a candidate
(L,C). We always pick the next candidate (L,C) from the queue and iterate over potential
resolution partners D. If we discover that a (flat) L-resolvent of C and D is not valid,
further processing of (L,C) is postponed and the candidate is “remembered” by the
partner clause D. If, on the other hand, all the (flat) L-resolvents with all the possible
partners D have been found valid, the clause C is declared blocked and the candidates
remembered by C are “resurrected” and put back to the queue. Their processing will be
resumed by iterating over those partners which have not been tried yet.

Our implementation uses for efficiency reasons an approximate solution which only
computes binary (flat) resolvents. Then, before testing a binary resolvent for validity, we
remove from it all literals that (1) are unifiable with L̄σ in the blocking case, or (2) have
the same predicate symbol and polarity as L̄ in the equality-blocking case. This still
ensures redundancy and significantly improves the performance.

For testing validity of flat L-resolvents in the equality case, we experimented with a
complete congruence-closure procedure which turned out to be too inefficient. Our current
implementation only “normalizes” in a single pass all (sub-)terms of the literals in a flat
resolvent using the equations from the flattening, but it ignores (dis-)equations originally
present in the two clauses and it does not employ the congruence rule recursively. Our
experiments show that even this limited version is effective.

1 A statically compiled x86_64 executable of Vampire used in our experiments can be obtained from
http://forsyte.at/wp-content/uploads/vampire_bce.zip.
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5.3.2 Relation to Existing Preprocessing Techniques

In the propositional setting, blocked-clause elimination is known to simulate on the CNF-
level several refinements of the standard CNF encoding for circuits [JBH10]. Similarly,
we observe that in the first-order setting BCE simulates pure-predicate elimination (PPE)
and we conjecture that under certain conditions (discussed later) it also simulates unused-
definition elimination (UDE), a formula-level simplification as described by Hoder et
al. [HKKV12]. In this section we briefly discuss these two techniques and explain their
relation to BCE. Apart from being of independent interest, the observations made in
this section are also relevant for interpreting the experimental results presented later.

We say that a predicate symbol P is pure in a formula F if, in F , all occurrences of
literals with predicate symbol P are of the same polarity. If a clause C contains a literal
L with a pure predicate symbol P , then there are no L-resolvents of C, hence C is
vacuously blocked. Therefore, blocked-clause elimination removes all clauses that contain
pure predicates and thus it simulates pure-predicate elimination.

UDE is a preprocessing method that removes so-called unused predicate definitions from
formulas that are not necessarily in CNF. Given a predicate symbol P and a general
formula ϕ such that P does not occur in ϕ, a predicate definition is a formula

def (P,ϕ) = ∀x1 . . . ∀xn P (x1, . . . , xn)↔ ϕ(x1, . . . , xn).

Assuming we have a predicate definition def (P,ϕ) as a conjunct within a larger formula
of the form Ψ = ψ ∧ def (P,ϕ), the definition is unused in Ψ if P does not occur in ψ.
UDE allows the elimination of such a definition and it is guaranteed that this elimination
preserves unsatisfiability [HKKV12]. (In fact, if P only occurs in ψ with a single polarity,
then one of the two implications of the equivalence def (P,ϕ), corresponding to that
polarity, can be dropped by UDE.)

Note that UDE operates on the level of general formulas while BCE is only defined
for formulas in CNF. Let therefore def (P,ϕ) be an unused predicate definition in the
formula Ψ = ψ ∧ def (P,ϕ) as above and let BCE(cnf(Ψ)) be the result of eliminating
all blocked clauses from a clause form translation cnf(Ψ) of Ψ. We conjecture that for
any “reasonably behaved” clausification procedure cnf (like, e.g., the well-known Tseitin
encoding [Tse68]), it holds that BCE(cnf(Ψ)) ⊆ cnf(ψ) if ϕ does not contain quantifiers.
In other words, BCE simulates UDE under the above conditions.

The main idea behind the simulation would be to show that each clause stemming from the
clausification of an unused definition def (P,ϕ) is blocked on the literal that corresponds
to the predicate P . The reason why the presence of quantifiers in the definition formula
ϕ poses a problem can be highlighted on the following simple example:

Example 46. The predicate definition def (P,∃xQ(x)) = P ↔ ∃xQ(x) can be clausified
as P̄ ∨ Q(c), P ∨ Q̄(x), where c is a Skolem constant corresponding to the existential
quantifier. By resolving these two clauses on P we obtain the resolvent Q(c) ∨ Q̄(x),
which is not valid.
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Figure 5.2: Histogram of problems by the percentage of blocked clauses eliminated. BCE
applied after simple clausification (left) and after clausification preceded by PPE and
UDE (right).

5.3.3 Empirical Evaluation

We present an empirical evaluation of our implementation of blocked-clause elimination
and equality-blocked-clause elimination, which is part of the preprocessing pipeline of
the automated theorem prover Vampire [KV13]. In our experiments, we used the 15 942
first-order benchmark formulas of the TPTP library [Sut09] (version 6.4.0).2

Of these benchmarks, 7898 were already in CNF, while the remaining 8044 general formu-
las needed to be clausified by Vampire before being subjected to our clause elimination
procedures. This clausification step was optionally preceded by Vampire’s implemen-
tation of PPE and UDE (see Section 5.3.2). 73 % of the benchmark formulas contain
the equality predicate. In these formulas, we eliminated equality-blocked clauses while
in the others we eliminated blocked clauses. All experiments were run on the StarExec
compute cluster [SST14].3

Occurrence of Blocked Clauses. Within a time limit of 300 s for parsing, clausifica-
tion (if needed), and subsequent blocked-clause detection and elimination, our implemen-
tation was able to process all but one problem. The average/median time for detecting
and eliminating blocked clauses was 0.238 s/0.001 s.

In total, the benchmarks correspond to 299 379 591 clauses. BCE removes 11.72 % of
these clauses, while independently processing the problems with PPE and UDE before
clausification leads to 7.66 % fewer clauses. Combining both methods yields a total
reduction of 11.73 %. Hence, the number of clauses which can be effectively removed by

2The TPTP library version 6.4.0 can can be downloaded at http://tptp.cs.miami.edu/TPTP/
Archive/TPTP-v6.4.0.tgz.

3 See http://forsyte.at/static/people/suda/bce_starexec_solvers.zip for the con-
figurations of solvers used in our experiment.
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Table 5.2: Effect of blocked-clause elimination on theorem proving strategies. Bold:
numbers of solved problems without blocked-clause elimination; positive (negative):
problems gained (lost, respectively) by using blocked-clause elimination.

Unsatisfiable Satisfiable Total
Vampire 3172 −28 +40 458 −0 +5 3630 −28 +45
E 3097 −20 +27 363 −1 +9 3460 −21 +36
CVC4 2930 −18 +37 9 −0 +68 2939 −18 +105

UDE but not by BCE or which can only be removed by BCE after some other clauses
have been effectively removed by UDE is in the order of 0.01 %.

Out of the 15 941 benchmarks, 59 % contain a blocked clause after simple clausification
and 48 % of these benchmarks contain a blocked clause if first processed by PPE and
UDE. Figure 5.2 shows the detailed distribution of eliminated blocked clauses. With
PPE and UDE disabled, more than 25 % of the clauses could be eliminated in over 1000
problems. Moreover, 113 satisfiable formulas were directly solved by BCE, which means
that BCE rendered the input empty. After applying PPE and UDE, which directly
solve 46 problems, subsequent BCE can directly solve 73 other problems. There are two
problems which can only be directly solved by the combination of PPE, UDE, and BCE.

Impact on Proving Performance. To measure the effect of BCE on recent theorem
provers, we considered the three best different systems of the main FOF division of
the 2016 CASC competition [SU16]: Vampire 4.0, E 2.0, and CVC4 1.5.1.4 Instead of
running the provers in competition configurations, which are in all three cases based on
a portfolio of strategies and thus lead to results that tend to be hard to interpret (cf.
also the discussion given by Reger et al. [RSV14]), we asked the respective developers to
provide a single representative strategy good for proving theorems by their prover and
then used these strategies in the experiment.

We combined Vampire as a clausifier with the three individual provers using the Unix pipe
construct. The clausification included PPE and UDE (enabled by default in Vampire)
and either did or did not include BCE. We set a time limit of 300 s for the whole
combination, so the possible time overhead incurred by BCE left less time for actual
proving. We ran the systems on the 7619 problems established above on which BCE
eliminates at least one clause.

Table 5.2 shows the numbers of solved problems without BCE and the difference when
BCE is enabled. We can see that on satisfiable problems, BCE allows every prover to
find more solutions; the most notable gain is observed with CVC4. BCE also enables

4 Actually, Vampire 4.1 was ranked second, but we did not include it, as it is just an updated version
of Vampire 4.0.
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Table 5.3: Effect of blocked-clause elimination on satisfiability checking strategies. Bold:
numbers of solved problems without blocked-clause elimination; positive (negative):
problems gained (lost, respectively) by using blocked-clause elimination.

Satisfiable Unsatisfiable Total
Vampire 531 −0 +24 719 −4 +5 1250 −4 +29
iProver 558 −0 +1 755 −6 +4 1313 −6 +5
CVC4 489 −1 +28 1724 −24 +20 2213 −25 +48

each prover to solve new unsatisfiable problems, but there are problems that cannot be
solved anymore (with the preselected strategy) when BCE is activated. Although the
overall trend is that using BCE pays off, the existence of the lost problems is slightly
puzzling. For a majority of them, the time taken to perform BCE is negligible and thus
cannot explain the phenomenon. Moreover, proofs that would make use of a blocked
clause, although they do sometimes occur, are quite rare.5 Our current explanation thus
appeals to the inherently “fragile” nature of the search spaces traversed by a theorem
prover, in which the presence of a clause can steer the search towards a proof even if the
clause does not itself directly take part in the proof in the end.

Strategies for Showing Satisfiability. Since the previous experiment indicates that
BCE can be especially helpful on satisfiable problems, we decided to test how much it
could improve strategies explicitly designed for establishing satisfiability, such as finite-
model finding. This should be contrasted with the previous strategies, which focused on
proving theorems. Here, we selected three systems successful in the FNT (First-order
form Non-Theorems) division of the 2016 CASC competition, namely Vampire 4.1,
iProver 2.5, and CVC4 1.5.1 and again picked representative strategies for each, this time
focusing on satisfiability detection. The overall setup remained the same, with a time
limit of 300 s.

Table 5.3 shows the results of this experiment. As we can see, Vampire and CVC4 solved
significantly more satisfiable problems when BCE was used. On the other hand, iProver
solved only one additional problem with the help of BCE. The results on unsatisfiable
problems, which are not specifically targeted by the selected strategies, did not show a
clear advantage of BCE.

Mock Portfolio Construction. Understanding the value of a new technique within
a theorem prover is very hard. The reason is that—in its most powerful configuration—a
theorem prover usually employs a portfolio of strategies and each of these strategies may

5 For 51 of the 3172 problems shown to be unsatisfiable by Vampire, the corresponding proof
contained a blocked clause. Nevertheless, none of these problems were among the 28 which Vampire did
not solve after applying BCE.
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respond differently to the introduction of a new technique. In fact, a portfolio constructed
without regard to the new technique is most likely suboptimal because the new technique
may—due to interactions which are typically hard to predict—give rise to new successful
strategies that could not be considered previously [RSV14]. In this final experiment,
which was carried out for us by Andrei Voronkov (the main designer of Vampire), we
tried to establish the value of BCE for the construction of a new strategy portfolio in
Vampire by emulating the typical first phase of the portfolio construction process, namely
random sampling of the space of all strategies. Encouraged by the previous experiment,
we focused on the construction of a portfolio specialized on detecting satisfiable problems.

The experiment involved 302 satisfiable problems from the TPTP library that were
previously established hard for Vampire, and that all contain at least one predicate
that is different from equality. The experiment was performed using randomly generated
strategies by flipping values of various options that define how the prover attempts to
establish satisfiability. Each strategy was cloned into two, one running with BCE as part
of the preprocessing and the other without. Every such pair of strategies was then run
on a randomly selected hard problem with a time limit of 120 s. In total, 50 000 pairs of
strategies were considered.

Strategies using BCE succeeded 8414 times while strategies not using BCE succeeded
6766 times. In particular, there were 1796 cases where only the BCE variation succeeded
on a problem compared to 148 cases where only the strategy without BCE succeeded.
This demonstrates that BCE is a valuable addition to the set of Vampire options and so
it will likely be employed by a considerable fraction, if not all, of the strategies of the
satisfiability checking CASC mode portfolio of Vampire in the future.
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CHAPTER 6
QRAT Simulates

Long-Distance Resolution

After having dealt extensively with propositional logic and first-order logic, we finally
arrive at quantified Boolean formulas (QBFs) [KB09], which extend propositional for-
mulas with existential and universal quantifiers over the propositional variables. These
quantifiers lead to succinct problem encodings, which makes QBF an attractive formalism
for reasoning in areas such as formal verification and artificial intelligence [BM08].

So far, we have modified formulas in propositional logic and first-order logic mostly by
adding and eliminating redundant clauses. Especially blocked clauses have played an
important role throughout the previous chapters. In this chapter, we deal with a QBF
concept that is closely related to blocked clauses—so-called blocked literals. We use both
blocked-literal addition and blocked-literal elimination to clarify the relationship between
two proof systems for QBF.

Proof systems for QBF have been extensively analyzed in order to obtain a better
understanding of the strengths and limitations of different QBF-solving approaches. This
has led to a comprehensive proof-complexity landscape, containing various proof systems
that are very different [BCJ15, Egl16, Che16, BP16, Jan16]. Two kinds of proof systems
have received particular attention: instantiation-based proof systems [BCJ14, BCJ15],
which provide the foundation for expansion-based solvers like RAReQS [JKMSC16], and
resolution-based proof systems [Jan16, KKF95, ZM02, BJ12, VG12a, BWJ14, BCMS16,
JGMS13, SS14], which provide the foundation for search-based solvers like DepQBF [LE17].
Apart from these, also sequent systems have been studied [Egl16, BP16]. There is,
however, another practically useful proof system—quite different from the aforementioned
ones—whose place in the complexity landscape was still unclear: the QRAT proof
system [HSB16].
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The QRAT proof system is a generalization of DRAT, which we discussed in Chapter 3,
where we dealt with propositional proof systems. One of the strengths of QRAT is
its ability to simulate preprocessing techniques: Many QBF solvers use preprocessing
techniques to simplify a QBF before they actually evaluate its truth. With the QRAT
system, it is possible to certify the correctness of virtually all preprocessing simplifications
performed by state-of-the-art QBF solvers and preprocessors. Additionally, there exist
efficient tools for checking the correctness of QRAT proofs as well as for extracting winning
strategies (so-called Skolem functions) from QRAT proofs of satisfiability [HSB16].

It can be easily seen that QRAT polynomially simulates the basic Q-resolution calcu-
lus [KKF95], meaning that there exists a polynomial-time procedure that transforms
valid Q-resolution proofs into valid QRAT proofs. Likewise, QRAT polynomially simu-
lates the calculus QU-Res [VG12a], which extends Q-resolution by allowing resolution
upon universal variables. So far, however, it was unclear how QRAT is related to the
long-distance-resolution calculus [ZM02, BJ12]—a calculus that is particularly popular
because it allows for short proofs both in theory and in practice [ELW13].

In the remainder of this chapter, we prove that QRAT can polynomially simulate the long-
distance-resolution calculus. For our simulation, we need only Q-resolution and universal
reduction together with blocked-literal elimination and blocked-literal addition using
fresh variables [HSB15, Kul99]. These four rules are allowed in QRAT. To illustrate the
power of blocked literals, we present handcrafted QRAT proofs of the formulas commonly
used to display the strength of long-distance resolution—the well-known Kleine Büning
formulas [KKF95]. Our proofs are slightly smaller than the long-distance resolution
proofs of these formulas described by Egly et al. [ELW13].

To put our simulation into practice, we implemented a tool that transforms long-distance-
resolution proofs into QRAT proofs. With this tool it is now possible to obtain QRAT
proofs that certify the correctness of both the preprocessing and the actual solving,
even when using a QBF solver based on long-distance resolution. We used our tool to
transform long-distance-resolution proofs of the Kleine Büning formulas into QRAT proofs.
We compare the resulting proofs with the handcrafted QRAT proofs as well as with the
original proofs. Rounding off the picture, we relate QRAT to popular resolution-based
proof systems and discuss open questions.

6.1 Quantified Boolean Formulas

We consider quantified Boolean formulas in prenex conjunctive normal form (PCNF),
which are of the form Q.ψ, where Q is a quantifier prefix (as defined in the following)
and ψ, called the matrix of the QBF, is a propositional formula in CNF. A quantifier
prefix has the form Q1X1 . . .QqXq, where all the Xi are mutually disjoint sets of variables,
Qi ∈ {∀, ∃}, and Qi 6= Qi+1. The quantifier of a literal l is Qi if var(l) ∈ Xi. Given a
literal l with quantifier Qi and a literal k with quantifier Qj , we write l ≤Q k if i ≤ j,
and l <Q k if i < j. If l ≤Q k, we say that l occurs outer to k and that k occurs inner
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to l. Moreover, if Q is clear from the context, we sometimes omit it and just write l ≤ k
or l < k.

Before we define the semantics of quantified Boolean formulas in PCNF, remember that
for a propositional formula ψ and an assignment α, we denote by ψ |α the result of first
removing from ψ all clauses that are satisfied by α and then removing from the remaining
clauses all literals that are falsified by α. A QBF ∃xQ.ψ is true if at least one of Q.ψ |x
and Q.ψ |x̄ is true, otherwise it is false. Respectively, a QBF ∀xQ.ψ is true if both Q.ψ |x
and Q.ψ |x̄ are true, otherwise it is false. If the matrix ψ of a QBF Q.ψ is the empty
formula, then Q.ψ is true. If φ contains the empty clause, then Q.ψ is false.

The formal definition of QBF proof systems is analogous to that of propositional proof
systems, again following Cook and Reckhow [CR79]:

Definition 53. A proof system for (false) quantified Boolean formulas in PCNF is a
surjective polynomial-time-computable function f : Σ∗ → F where Σ is some alphabet
and F is the set of all false QBFs.

Polynomial simulations of proof systems are then defined as follows [CR79]:

Definition 54. A proof system f1 : Σ∗1 → F polynomially simulates a proof system
f2 : Σ∗2 → F if there exists a polynomial-time-computable function g : Σ∗2 → Σ∗1 such that
f1(g(x)) = f2(x).

In other words, f1 polynomially simulates f2 if there exists a polynomial-time-computable
function that transforms f2-proofs into f1-proofs.

6.1.1 Resolution-Based Proof Systems

In resolution-based proof systems, a proof P of a QBF Q.ψ = Q.C1 ∧ · · · ∧ Cm is a
sequence Cm+1, . . . , Cn of clauses where Cn = ⊥, and where for every Ci (m+ 1 ≤ i ≤ n),
it holds that Ci has been derived from clauses in ψ or from earlier clauses in P (i.e., from
clauses with index strictly smaller than i) by applications of either the ∀-red rule (also
called universal reduction) or instantiations of the resolution rule which are defined as
follows:

C ∨ l (∀-red)
C

C ∨ l D ∨ l̄ (resolution)
C ∨D

The rule ∀-red is only applicable if the literal l is universal and if for every existential
literal k ∈ C, it holds that k <Q l. We assume that ψ contains no tautologies, otherwise
the ∀-red rule is unsound. In the resolution rule, we say the resolvent (C ∨D) is derived
from its two antecedent clauses (C ∨ l) and (D ∨ l̄). Depending on the preconditions we
define for the resolution rule, we obtain different proof systems.

The most basic resolution-based proof system for QBF is the so-called Q-resolution
calculus (Q-Res) [KKF95]. It uses the resolution rule Q-res which requires that (1) l is
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existential and that (2) C does not contain a literal k such that k̄ ∈ D. In contrast, the
long-distance-resolution calculus (LQ-Res) [ZM02, BJ12] uses a less restrictive variant of
the resolution rule, called LQ-res, which requires that (1) l is existential and that (2) for
every literal k ∈ C such that k̄ ∈ D, it holds that k is universal and l <Q k. Note that
every Q-res step is also an LQ-res step. In the rest of this chapter, we refer to resolution
steps as LQ-res steps only if they are not Q-res steps, otherwise we refer to them as
Q-res steps. Note that in the literature a complementary pair x, x̄ is also represented by
a so-called merged literal x∗.

Example 47. Consider the QBF φ = ∃a∀x∃b∃c.(ā∨ x̄∨ c)∧ (x̄∨ b∨ c̄)∧ (a∨x∨ b)∧ (b̄).
The following is a long-distance-resolution proof of φ: ā ∨ x̄ ∨ b, x ∨ x̄ ∨ b, x ∨ x̄, x, ⊥.
We explain this proof in more detail later (also see Figure 6.1 on page 102).

6.1.2 The Proof System QRAT Light

To simulate long-distance resolution, we do not need the full power of the QRAT proof
system [HSB16]. We therefore introduce only a restricted (simpler) version of QRAT.
One of the main concepts in this variant of QRAT is the concept of a blocked literal, which
is closely related to blocked clauses. For the definition of blocked literals, we first have to
introduce so-called outer resolvents:

Definition 55. Given two clauses (C ∨ l), (D ∨ l̄) of a QBF Q.ψ, the outer resolvent
(C ∨ l)⊗Ql (D ∨ l̄) of (C ∨ l) with (D ∨ l̄) upon l is the clause consisting of all literals in
C together with those literals of D that occur outer to l, i.e., the outer resolvent is the
clause C ∪ {k | k ∈ D and k ≤Q l}.

Notice that the outer-resolvent operation is not commutative. We can now define blocked
literals:

Definition 56. A universal literal l is blocked in a clause (C ∨ l) with respect to a QBF
Q.ψ if, for every clause (D ∨ l̄) ∈ ψ \ {C ∨ l}, the outer resolvent (C ∨ l)⊗Ql (D ∨ l̄) is a
tautology.

Example 48. Let φ = ∃a∀x, y∃b.(a ∨ x ∨ y) ∧ (ā ∨ x̄ ∨ b) ∧ (ȳ ∨ x̄ ∨ b). The literal x is
blocked in (a ∨ x ∨ y) with respect to φ: There are two outer resolvents of (a ∨ x ∨ y)
upon x, namely (a∨ y∨ ā), obtained by resolving with (ā∨ x̄∨ b), and (a∨ y∨ ȳ), obtained
by resolving with (ȳ ∨ x̄ ∨ b). Both are tautologies.

The removal of a literal that is blocked in a clause is called blocked-literal elimina-
tion (BLE) [HSB15]. If, after adding a literal to a clause, the literal is blocked in that
clause, then this addition is called blocked-literal addition (BLA). Both BLE and BLA do
not change the truth value of a formula.

In our restricted variant of QRAT, a derivation for a QBF φ is a sequence M1, . . . ,Mn of
proof steps. Starting with φ0 = φ, every Mi modifies φi−1 in one of the following four
ways, which results in a new formula φi:
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(1) It adds to φi−1 a clause that is derived from two clauses in φi−1 via an
(unrestricted) resolution step.

(2) It adds to φi−1 a clause C that is obtained from a clause (C ∨ l) ∈ φi−1
by a ∀-red step, with the additional restriction that C does not contain l̄.

(3) It adds a blocked literal to a clause in φi−1.

(4) It removes a blocked literal from a clause in φi−1.

A QRAT derivation M1, . . . ,Mn therefore gradually derives new formulas φ1, . . . , φn from
the starting formula φ. If the final formula φn contains the empty clause ⊥, then the
derivation is a (refutation) proof of φ. Note that the ∀-red rule in QRAT is more restricted
than the ∀-red rule from the resolution-based proof systems, making it sound also when
clauses contain complementary literals.

To simplify the presentation, we do not specify how the modification steps Mi are
represented syntactically. We also do not include clause deletion. Note that certain proof
steps can modify the quantifier prefix by introducing new or removing existing variables.
Note also that Q-resolution proofs do not contain complementary literals, so they can be
simply rewritten into QRAT proofs using only Q-res and ∀-red steps. Finally, we want to
highlight that for our simulation, we do not need the unrestricted resolution rule; the
Q-res rule suffices.

6.2 Illustration of the Simulation
We illustrate by an example how our restricted variant of QRAT can simulate the long-
distance-resolution calculus. As already mentioned, the ∀-red rule used in QRAT is more
restricted than the one in the long-distance-resolution calculus because it does not allow
us to remove a literal l from a clause that contains l̄. This means that once we derive
a clause that contains both a literal l and its complement l̄, we cannot simply get rid
of the two literals by using the ∀-red rule. We therefore want to avoid the derivation
of clauses with complementary literals entirely. Now, the only way the long-distance-
resolution calculus can derive such clauses is via resolution (LQ-res) steps. So to avoid
the complementary literals, we eliminate them already before performing the resolution
steps. We demonstrate this on an example:

Example 49. Consider the QBF φ = ∃a∀x∃b∃c.(ā∨ x̄∨ c)∧ (x̄∨ b∨ c̄)∧ (a∨ x∨ b)∧ (b̄)
from Example 47. To increase readability, we illustrate its long-distance-resolution proof
as a proof tree in Figure 6.1. To simulate this proof with QRAT, we first add the resolvent
(ā ∨ x̄ ∨ b) to φ via a Q-res step to obtain the new formula φ′. Now we cannot simply
perform the next derivation step (the LQ-res step) because the resulting resolvent (x∨x̄∨b)
would contain complementary literals. To deal with this, we try to eliminate x from the
clause (a ∨ x ∨ b). This is where the addition and elimination of blocked literals come
into play.
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a ∨ x ∨ b
x̄ ∨ b ∨ c̄ ā ∨ x̄ ∨ c (Q-res)

ā ∨ x̄ ∨ b (LQ-res)
x ∨ x̄ ∨ b b̄ (Q-res)

x ∨ x̄ (∀-red)x (∀-red)
⊥

Figure 6.1: LQ-res proof of QBF φ = ∃a∀x∃b∃c.(ā∨ x̄∨ c)∧ (x̄∨ b∨ c̄)∧ (a∨ x∨ b)∧ (b̄).

We cannot yet eliminate x from φ′ because x is not blocked in (a∨x∨ b) with respect to φ′:
For x to be blocked, all outer resolvents of (a∨x∨ b) upon x must contain complementary
literals. The clauses that can be resolved with (a ∨ x ∨ b) are (ā ∨ x̄ ∨ c), (ā ∨ x̄ ∨ b),
and (x̄ ∨ b ∨ c̄). While the outer resolvents with the former two clauses contain the
complementary literals a and ā, the outer resolvent (a ∨ b), obtained by resolving with
(x̄ ∨ b ∨ c̄), does not contain complementary literals.

Now we use a feature of QRAT to make x blocked in (a ∨ x ∨ b): We add a new literal x′
(which goes to the same quantifier block as x) to (a∨ x∨ b) to turn it into (a∨ x′ ∨ x∨ b).
The addition of x′ is clearly a blocked-literal addition as there are no outer resolvents of
(a∨ x′ ∨ x∨ b) upon x′. Likewise, we add the complement x̄′ of x′ to (x̄∨ b∨ c̄) to turn it
into (x̄′ ∨ x̄ ∨ b ∨ c̄). Again this is a blocked-literal addition since (a ∨ x′ ∨ x ∨ b) (which
is the only clause containing the complement x′ of x̄′) contains x while (x̄′ ∨ x̄ ∨ b ∨ c̄)
contains x̄.

Now the complementary pair x′, x̄′ is contained in the outer resolvent of (a ∨ x′ ∨ x ∨ b)
with (x̄′ ∨ x̄ ∨ b ∨ c̄) upon x. Thus, the literal x becomes blocked in (a ∨ x′ ∨ x ∨ b) and so
we can remove it to obtain (a ∨ x′ ∨ b). We have thus replaced x in (a ∨ x ∨ b) by x′ and
now we can resolve (a ∨ x′ ∨ b) with (ā ∨ x̄ ∨ b) upon a to obtain the resolvent (x′ ∨ x̄ ∨ b)
(instead of (x ∨ x̄ ∨ b) as in the original proof ). Finally, we resolve (x′ ∨ x̄ ∨ b) with b̄ to
obtain (x′ ∨ x̄) from which we derive the empty clause ⊥ via ∀-red steps.

To summarize, we start by simply adding clauses of a given long-distance-resolution
proof to our formula until we encounter an LQ-res step. To avoid complementary literals
in the resolvent of the LQ-res step, we then use blocked-literal addition and blocked-
literal elimination to replace these literals. After this, we can derive a resolvent without
complementary literals and move on until we encounter the next LQ-res step, which we
again eliminate. We repeat this procedure until the whole long-distance-resolution proof
is turned into a QRAT proof.

Note that the modification of existing clauses has an impact on later derivations. For
instance, by replacing (a ∨ x ∨ b) in the above example with (a ∨ x′ ∨ b), we not only
affected the immediate resolvent (x ∨ x̄ ∨ b), which we turned into (x′ ∨ x̄ ∨ b), but also
the later resolvent (x ∨ x̄), which became (x′ ∨ x̄). We therefore have to show that these
modifications are harmless in the sense that they do not lead to an invalid proof. We do
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so in the next section, where we define our simulation in detail before proving that it
indeed produces a valid QRAT proof.

6.3 Simulation
We first describe our simulation procedure on a high level before we specify the details
and prove its correctness. As we have seen, given a long-distance-resolution proof, we
can use QRAT to derive all clauses up to the first LQ-res step. The crucial part of the
simulation is then the elimination of complementary literals from this LQ-res step, which
might involve the modification of several clauses via the addition and elimination of
blocked literals.

Let φ = Q.C1 ∧ · · · ∧Cm be a QBF and let P = Cm+1, . . . , Cr, . . . , Cn be a long-distance-
resolution proof of φ where Cr is the first clause derived via an LQ-res step. If there is
no such Cr, the proof can be directly translated to QRAT. Otherwise, in a first step, our
procedure produces a QRAT derivation that adds all the clauses Cm+1, . . . , Cr−1 to φ
by using Q-res and ∀-red steps. It then uses blocked-literal addition and blocked-literal
elimination to avoid complementary literals in the resolvent Cr, which it thereby turns
into a different resolvent C ′r. After this, it adds C ′r to φ via a Q-res step. The result is a
QRAT derivation of a formula φ′ from φ. We explain this first step in Section 6.3.1.

In a second step, the procedure first removes all the clauses Cm+1, . . . , Cr from P since
they—or their modified variants—are now all contained in φ′. As several clauses have
been modified via blocked-literal addition and blocked-literal elimination in the first step,
it then propagates these modifications through the remaining part of P . This turns P
into a long-distance resolution proof P ′ of φ′. We explain this second step in Section 6.3.2.

By repeating these two steps for every LQ-res step, we finally obtain a QRAT proof
of φ. Thus, we have to show that after the above two steps (i.e., after one iteration
of our procedure), φ′ is obtained by a valid QRAT derivation and the proof P ′ is a
valid long-distance-resolution proof of φ′ that is shorter than P . The correctness of the
simulation follows then simply by induction.

To simplify the presentation, we assume that the long-distance resolvent Cr contains
only one pair of complementary literals, i.e., Cr = (C ∨D ∨ x ∨ x̄) was derived from two
clauses (C ∨ l ∨ x) and (D ∨ l̄ ∨ x̄) where C does not contain a literal k such that k̄ is
contained in D. Although this assumption leads to a loss of generality, we show later
that our argument can be easily extended to the more general case where C and D are
allowed to contain multiple pairs of complementary literals.

6.3.1 QRAT Derivation of the Formula φ′

Below we describe the QRAT derivation of φ′ from φ. Initially, φ′ = φ.

1. Add the clauses Cm+1, . . . Cr−1 to φ′ via Q-res and ∀-red steps.
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2. Consider the LQ-res step that derived Cr = (C ∨ D ∨ x ∨ x̄) from two clauses
(C ∨ l ∨ x) and (D ∨ l̄ ∨ x̄):

C ∨ l ∨ x D ∨ l̄ ∨ x̄ (LQ-res)
C ∨D ∨ x ∨ x̄

Towards making x blocked in (C ∨ l ∨ x), add a new literal x′ (that goes to the
same quantifier block as x) to (C ∨ l ∨ x) to turn it into (C ∨ l ∨ x′ ∨ x).

3. Add x̄′ to each clause Ci ∈ φ′ for which (1) x̄ ∈ Ci, and (2) the outer resolvent of
(C ∨ l ∨ x′ ∨ x) and Ci upon x is not a tautology.

4. Now x is a blocked literal in (C ∨ l ∨ x′ ∨ x). Eliminate it to obtain (C ∨ l ∨ x′).

5. Add the clause (C ∨D ∨ x′ ∨ x̄) to φ′ by performing a Q-res step of (C ∨ l ∨ x′)
and (D ∨ l̄ ∨ x̄) upon l.

To see that this results in a valid QRAT derivation, observe the following: In step 2, the
addition of x′ is a blocked-literal addition, since x̄′ is not contained in any of the clauses.
In step 3, for every Ci with x̄ ∈ Ci, the addition of x̄′ is a blocked-literal addition as only
(C ∨ l ∨ x′ ∨ x) can be resolved with Ci upon x̄′ and the corresponding outer resolvent
contains x and x̄. Note that instead of eliminating x from (C ∨ l ∨ x), we could have also
eliminated x̄ from (D ∨ l̄ ∨ x̄). It remains to modify the long-distance-resolution proof P
of φ so that it becomes a valid proof of φ′.

6.3.2 Modification of the Long-Distance-Resolution Proof

We turn the proof P = Cm+1, . . . , Cr, . . . , Cn of φ into a proof P ′ of φ′. First, we remove
the clauses Cm+1, . . . , Cr from P since φ′ already contains variants C ′m+1, . . . , C

′
r of these

clauses. Second, since we have modified the clauses in φ′, we have to propagate these
modifications through the remaining proof.

Assume, for instance, that in P the clause Cr+1 has been obtained by resolving a clause
Ci with a clause Cj . Both Ci and Cj might have been affected by blocked-literal additions
so that they are now different clauses C ′i, C ′j ∈ φ′. To account for these modifications
of Ci and Cj , we replace Cr+1 in P by the resolvent of C ′i and C ′j . Moreover, in cases
where P removes x from a clause via a ∀-red step, we now also remove x′. Analogously
for x̄′ and x̄.

To formalize these modifications, we first assign to every clause Ci with 1 ≤ i ≤ r its
corresponding clause of φ′ as follows:

C ′i =


Ci ∪ {x̄′} if x̄ ∈ Ci and the outer resolvent of (C ∨ l ∨ x ∨ x′)

and Ci upon x is not a tautology;
(Ci \ {x}) ∪ {x′} if Ci = Cr or Ci = (C ∨ l ∨ x);
Ci otherwise.
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Note that, by construction, C ′i ∈ φ′ for 1 ≤ i ≤ r. For every i such that r < i ≤ n, we
step-by-step, starting with i = r + 1, define C ′i based on the derivation rule that was
used for deriving Ci in P . We distinguish between clauses derived by resolution steps
and clauses derived by ∀-red steps:

(1) Ci has been derived via a resolution step of two clauses Cj = (C ∨ l) and
Ck = (D∨ l̄) upon l, i.e., Ci = (C ∨D). We define C ′i = C ′j \ {l}∨C ′k \ {l̄}.

(2) Ci has been derived from a clause Cj via a ∀-red step. If the ∀-red step
removes a literal l with var(l) 6= var(x), we define C ′i = C ′j \ {l}. If it
removes x, we define C ′i = C ′j \ {x, x′}, and if it removes x̄, we define
C ′i = C ′j \ {x̄, x̄′}.

Note that ∀-red steps of x and x̄ in P ′ might remove two literals at once. Although such
∀-red steps do not constitute valid derivation steps in a strict sense, this is not a serious
problem. These steps can be easily rewritten into two distinct ∀-red steps since x and x′
are in the same quantifier block. For instance, the left step below can be rewritten into
the two steps on the right:

C ∨ x ∨ x′ (∀-red)
C

C ∨ x ∨ x′ (∀-red)
C ∨ x (∀-red)
C

Next, we show that the resulting proof P ′ is—apart from the minor detail just mentioned—
a valid long-distance-resolution proof of φ′.

6.4 Correctness of the Simulation
To prove the correctness of our simulation, we first introduce a lemma that guarantees
that the modified long-distance-resolution proof P ′ has a similar structure as the original
proof P :

Lemma 56. Let φ′ = Q′.C ′1 ∧ · · · ∧ C ′r and P ′ = C ′r+1, . . . , C
′
n be obtained from φ =

Q.C1 ∧ · · · ∧Cm and P = Cm+1, . . . , Cr, . . . , Cn as defined above. Then, for every clause
C ′i with 1 ≤ i ≤ n, the following holds: (1 ) If x′ or x is in C ′i, then x ∈ Ci. (2 ) If x̄′ or
x̄ is in C ′i, then x̄ ∈ Ci. (3 ) C ′i agrees with Ci on all literals whose variables are different
from x and x′, i.e., C ′i \ {x, x̄, x′, x̄′} = Ci \ {x, x̄}.

Proof. By induction on i.

Base Case (i ≤ r): The claim holds by the definition of C ′i.

Induction Step (r < i): Consider the clause Ci in P that corresponds to C ′i. We
proceed by a case distinction based on how Ci was derived in P .
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Case 1: Ci is a resolvent Cj \ {l} ∨ Ck \ {l̄} of two clauses Cj , Ck. In this case,
C ′i = C ′j \ {l} ∨ C ′k \ {l̄}. By the induction hypothesis, the statement holds for C ′j and
C ′k. Now, if C ′i contains x′ or x, then at least one of C ′j and C ′k must contain x′ or x and
thus one of Cj and Ck must contain x, hence x ∈ Ci. Analogously, if C ′i contains x̄′ or x̄,
then Ci contains x̄. Now, C ′j agrees with Cj on all literals whose variables are different
from x and x′, and the same holds for C ′k and Ck. Thus, C ′i agrees with Ci on all literals
whose variables are different from x and x′.

Case 2: Ci has been derived from a clause Cj via a ∀-red step, i.e., Ci = Cj \ {l}
for some universal literal l. By the induction hypothesis, the statement holds for C ′j .
If var(l) 6= var(x′), then C ′i = C ′j \ {l} and thus the claim holds. If l = x, then
C ′i = C ′j \ {x, x′} and thus the claim holds too. The case where l = x̄ is analogous to the
case where l = x.

We can now show that the proof P ′, produced by our simulation procedure, is a valid
long-distance-resolution proof of φ′:

Theorem 57. Let φ′ = Q′.C ′1 ∧ · · · ∧ C ′r and P ′ = C ′r+1, . . . , C
′
n be obtained from

φ = Q.C1 ∧ · · · ∧ Cm and P = Cm+1, . . . , Cr, . . . , Cn by our procedure. Then, P ′ is a
valid long-distance-resolution proof of φ′.

Proof. We have to show that every clause C ′i in P ′ has been derived from clauses in
C ′1, . . . , C

′
i−1 via a valid application of a derivation rule and that C ′n = ⊥. To show that

every clause in P ′ has been derived via a valid application of a derivation rule, let C ′i be a
clause in P ′. We proceed by a case distinction based on the rule via which its counterpart
Ci has been derived in P :

Case 1: Ci has been derived from two clauses Cj , Ck via a Q-res step or an LQ-res step
upon some existential literal l. In this case, C ′i = C ′j \ {l} ∨ C ′k \ {l̄}. We have to show
that l ∈ C ′j , l̄ ∈ C ′k, and that for every literal l′ ∈ C ′j such that l′ 6= l and l̄′ ∈ C ′k, it
holds that l′ is universal and l <Q′ l′. By Lemma 56, C ′j agrees with Cj on all literals
whose variables are different from the universal literals x and x′. Likewise for C ′k and Ck.
Therefore, l ∈ C ′j and l̄ ∈ C ′k.

Now, assume C ′j contains a literal l′ such that l′ 6= l and l̄′ ∈ C ′k. If the variable of l′
is different from x and x′, then it must be the case that l′ is universal and l <Q′ l′, for
otherwise the derivation of Ci in P were not valid. Assume thus that the variable of l′ is
either x or x′. If l′ is either x or x′, then Lemma 56 implies that Cj contains x and also,
since l̄′ ∈ C ′k, that Ck contains x̄. Therefore, it holds that l <Q′ x (since otherwise the
derivation of Ci in P were not valid) and since x′ and x are in the same quantifier block,
it also holds that l <Q′ x′, hence l <Q′ l′. The case where l′ is x̄ or x̄′ is symmetric.

Case 2: Ci has been derived from a clause Cj via a ∀-red step, that is, by removing
a universal literal l such that for every existential literal l′ ∈ Cj , it holds that l′ <Q l.
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If var(l) 6= x, then C ′j = C ′i \ {l} and since, by Lemma 56, C ′i coincides with Ci on
all existential variables, it holds for every existential literal l′ ∈ C ′i that l′ <Q′ l. If
var(l) = x, then C ′j is of the form C ′i \ {x, x′} or C ′i \ {x̄, x̄′}. Now, x and x′ are in the
same quantifier block and thus, with the same argument as for var(l) = x, it holds for
every existential literal l′ ∈ C ′j that l′ <Q′ l.

Finally, to see that C ′n = ⊥, observe the following: By Lemma 56, since x and x̄ are not
in Cn, it follows that x′ and x̄′ are not in C ′n. Moreover, again by Lemma 56, Cn and C ′n
agree on all other literals. Therefore, C ′n = Cn = ⊥.

We can also show that our simulation does not introduce new LQ-res steps. Hence, if a
long-distance-resolution proof contains n LQ-res steps, our simulation terminates after at
most n iterations (the proof is omitted due to space reasons):

Theorem 58. Let P ′ be obtained from φ = Q.ψ and P by our procedure. Then, P ′
contains fewer LQ-res steps than P .

Until now, we have assumed that LQ-res steps involve only a single pair of complementary
universal literals. When multiple such pairs are involved, the procedure changes only
slightly: Instead of eliminating only a single literal from one of the clauses involved in
the LQ-res step, we now eliminate several of them. If we start with the outermost such
literal and gradually move inwards, we ensure that at most one blocked literal is added
per clause. As an example, consider the following derivation in a long-distance-resolution
proof of the QBF φ = ∃a∃b∀x∃c∀y∃d.(b ∨ x ∨ c ∨ y ∨ d) ∧ (a ∨ x̄ ∨ c) ∧ (ā ∨ b̄ ∨ ȳ ∨ d):

b ∨ x ∨ c ∨ y ∨ d
a ∨ x̄ ∨ c ā ∨ b̄ ∨ ȳ ∨ d

(Q-res)
b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d

(LQ-res)
x ∨ x̄ ∨ c ∨ y ∨ ȳ ∨ d

In the LQ-res step, there are two pairs of complementary universal literals, namely x, x̄ and
y, ȳ. We therefore try to get rid of both x and y in the left antecedent L = (b∨x∨c∨y∨d)
of the LQ-res step. As in the case where only one literal is removed, we start by deriving
in QRAT all clauses that occur before the LQ-res step. In this case, we add (b̄∨x̄∨c∨ ȳ∨d)
to φ via a Q-res step and denote the resulting formula by φ′.

Now we want to remove x from L via blocked-literal elimination. In order for x to be
blocked in φ′, all outer resolvents of L upon x have to be tautologies. The formula φ′
contains two clauses that can be resolved with L upon x, namely (b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d) and
(a ∨ x̄ ∨ c). As the first clause contains b̄ and L contains b, the corresponding outer
resolvent upon x contains b, b̄. But there are no complementary literals in the outer
resolvent (a ∨ b) with the second clause. We therefore add a fresh literal x′ to L and add
its complement x̄′ to (ā∨ x̄∨ c) to obtain φ′ = ∃a∃b∀x∀x′∃c∀y∃d.(b∨ x∨ x′ ∨ c∨ y ∨ d)∧
(a ∨ x̄ ∨ x̄′ ∨ c) ∧ (ā ∨ b̄ ∨ ȳ ∨ d) ∧ (b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d).
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We can now remove the blocked literal x from (b∨ x∨ x′ ∨ c∨ y ∨ d) to obtain the clause
L′ = (b ∨ x′ ∨ c ∨ y ∨ d). If we now resolved L′ with (b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d), we would get the
following LQ-res step:

b ∨ x′ ∨ c ∨ y ∨ d b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d
(LQ-res)

x′ ∨ x̄ ∨ c ∨ y ∨ ȳ ∨ d

Since there is still a clash of y and ȳ, we need to get rid of y in L′. We can do this
without performing any blocked-literal additions: The only clauses in φ′ that contain
ȳ are (ā ∨ b̄ ∨ ȳ ∨ d) and (b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d), and the outer resolvents of L′ with both of
them contain complementary literals. We can thus remove y from L′ and use a Q-res
step to add the resulting resolvent to φ′:

b ∨ x′ ∨ c ∨ d b̄ ∨ x̄ ∨ c ∨ ȳ ∨ d
(Q-res)

x′ ∨ x̄ ∨ c ∨ ȳ ∨ d

Similar to the case where we only eliminated one literal, we then propagate the cor-
responding changes through the rest of the proof to turn it into a valid long-distance
resolution proof of φ′.

6.5 Complexity of the Simulation

After showing how a long-distance-resolution proof can be translated into a QRAT proof,
we still have to prove that the size (the number of derivation steps) of the resulting
QRAT proof is polynomial with respect to the size of the original proof and the formula.
We have seen that the long-distance-resolution proof and the QRAT proof correspond
one-to-one on resolution steps and ∀-red steps. Therefore, we only need to estimate
the number of blocked-literal addition and blocked-literal elimination steps to obtain an
upper bound on the size of the QRAT proof.

Consider a long-distance-resolution proof Cm+1, . . . , Cr, . . . , Cn of a QBF Q.C1∧· · ·∧Cm,
where Cr is the first clause that is derived via an LQ-res step:

C ∨ l ∨ k1 ∨ · · · ∨ kp D ∨ l̄ ∨ k̄1 ∨ · · · ∨ k̄p
(LQ-res)

Cr = C ∨D ∨ k1 ∨ k̄1 ∨ · · · ∨ kp ∨ k̄p

We can make the following observation: To remove all the universal literals k1, . . . , kp
from (C ∨ l ∨ k1 ∨ · · · ∨ kp) via blocked-literal elimination, we have to add at most one
new literal of the form k̄′i to every clause C1, . . . , Cr−1 if we start by eliminating the
outermost universal literal k1 and step-by-step work ourselves towards the innermost
literal kp. The reason this works is as follows:
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Assume we have added the literal k′1 to (C ∨ l ∨ k1 ∨ · · · ∨ kp) and the corresponding
literal k̄′1 to another clause Ci = (C ′i ∨ k̄1) to obtain complementary literals in the outer
resolvent of the resulting clauses (C ∨ l ∨ k1 ∨ k′1 ∨ · · · ∨ kp) and (C ′ ∨ k̄1 ∨ k̄′1) upon k1.
Then, the outer resolvent of (C ∨ l ∨ k1 ∨ k′1 ∨ · · · ∨ kp) with (C ′ ∨ k̄1 ∨ k̄′1) upon a literal
kj that is inner to k1 (i.e., k1 <Q kj) contains the complementary pair k′1, k̄′1, so we have
to add no further literals to (C ′ ∨ k̄1 ∨ k̄′1).

Hence, the number of blocked-literal additions for literals of the form k̄′i is bounded by
the number of clauses, that is, by n. Moreover, for every addition of a literal k̄′i to some
clause, there is at most one addition of the corresponding literal k′i. Therefore, there
are at most 2n blocked-literal additions per LQ-res step. Now, for every addition of a
literal k′i, there is exactly one elimination of the corresponding literal ki. Thus, overall
there are at most 3n blocked-literal additions and eliminations for every LQ-res step.
Since the number of LQ-res steps is bounded by the number of clauses in the proof,
the size of the QRAT derivation is at most 3n2. It follows that whenever a QBF has
a long-distance-resolution proof of polynomial size, it also has a polynomial-size QRAT
proof. As all the steps in the transformation are straightforward, it should then be clear
that this transformation can be performed in polynomial time. We thus get:

Theorem 59. The QRAT proof system polynomially simulates the long-distance-resolu-
tion calculus.

6.6 Empirical Evaluation

We now know that QRAT can polynomially simulate long-distance resolution. But what
does it mean in practice? Can we have short QRAT proofs for formulas that have short long-
distance-resolution proofs? To answer this question at least partly, we consider the formu-
las well-known for having short long-distance-resolution proofs while only having long Q-
resolution proofs—the Kleine Büning formulas [KKF95]. A Kleine Büning formula of size
n, in short KBKFn, has the prefix ∃a0, a1, b1∀x1∃a2, b2∀x2 . . . ∃an, bn∀xn∃c1, c2, . . . , cn
and the following clauses:

I : ā0 I ′ : a0 ∨ ā1 ∨ b̄1
Ai : ai ∨ x̄i ∨ āi+1 ∨ b̄i+1 Bi : bi ∨ xi ∨ āi+1 ∨ b̄i+1 for i ∈ {1..n− 1}
C : an ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n C ′ : bn ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n
Xi : x̄i ∨ ci X ′i : xi ∨ ci for i ∈ {1..n}

We can reduce a formula KBKFn to a formula KBKFn−1 by using only Q-res, blocked-
literal elimination, and clause-deletion steps1 (no ∀-red steps or resolution upon universal
literals). To do so, we use the clauses An, Bn, C, C ′, Xn, and X ′n of KBKFn to construct
the clauses C and C ′ of KBKFn−1. The required 12 steps are shown below. The last
two clauses (11 and 12) respectively correspond to the clauses C and C ′ of KBKFn−1.

1Clause deletion was not used in the simulation, but is allowed in the QRAT system.
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Table 6.1: The size of Kleine Büning formulas in the number of variables and clauses.
Additionally, the size of their long-distance-resolution proofs (in the QRP format) in the
number of Q-res steps (Q), LQ-res steps (LQ), ∀-red steps (∀), and the file size in KB
(ignoring the part that represents the formula). On the right, the number of Q-res (Q),
BLE (BLE), and deletion (D) steps as well as the file size for the manual QRAT proofs.

Input Formula LD proofs (QRP) QRAT proofs
Formula Variables Clauses Q LQ ∀ File Size Q BLE D File Size
KBKF10 41 42 41 18 38 6 57 38 92 6
KBKF50 201 202 201 98 198 138 297 198 492 112
KBKF100 401 402 401 198 398 573 597 398 992 421
KBKF200 801 802 801 398 798 2321 1197 798 1992 1627
KBKF500 2001 2002 2001 998 1998 16 259 2997 1998 4992 11 890

1. an ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of C and Xn)
2. bn ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of C ′ and X ′n)
3. (delete C, C ′, Xn, X ′n)
4. an−1 ∨ x̄n−1 ∨ b̄n ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 1 and An−1)
5. bn−1 ∨ xn−1 ∨ ān ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 2 and Bn−1)
6. an−1 ∨ x̄n−1 ∨ b̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of x̄n from 4)
7. bn−1 ∨ xn−1 ∨ ān ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of xn from 5)
8. an−1 ∨ x̄n−1 ∨ xn ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 6 and Bn−1)
9. bn−1 ∨ xn−1 ∨ x̄n ∨ c̄1 ∨ · · · ∨ c̄n−1 (Q-res of 7 and An−1)
10. (delete 4, 5, 6, 7, An−1, Bn−1)
11. an−1 ∨ x̄n−1 ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of xn from 8)
12. bn−1 ∨ xn−1 ∨ c̄1 ∨ · · · ∨ c̄n−1 (BLE of x̄n from 9)

Table 6.1 shows the sizes of the Kleine Büning formulas as well as of the corresponding
long-distance-resolution proofs (in the QRP format) and QRAT proofs. The latter are
obtained by the construction mentioned in this section. The size of both types of proofs
is linear in the size of the formula. Although QRAT proofs use about twice as many proof
steps (including deletion steps), the file size of QRAT proofs is smaller. The explanation
for this is that long-distance-resolution proofs increase the length of clauses, while QRAT
proofs decreases their length.

Short proofs of the KBKF formulas can also be obtained by using resolution upon
universal variables as in the calculus QU-Res [VG12a]. There is, however, a variant of the
KBKF formulas, called KBKFn−qu [BWJ14], which has only exponential proofs in the
QU-Res calculus. A KBKFn−qu formula is obtained from KBKFn by adding a universal
literal yi (occurring in the same quantifier block as xi) to every clause in KBKFn that
contains xi, and a literal ȳi to every clause in KBKFn. For these formulas, blocked-literal
elimination can remove all the yi and ȳi literals, which reduces a KBKFn−qu formula to
a KBKFn formula that can then be efficiently proved using resolution upon universal
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Table 6.2: Comparison of the QRAT proofs obtained by applying ld2qrat to long-
distance-resolution proofs (in the QRP format) of the Kleine Büning formulas. The file
size is given in KB and the time for translating the proof (time) is given in seconds.

QRP to QRAT Without Deletion QRP to QRAT With Deletion
Formula Variables Steps File Size Time Variables Steps File Size Time
KBKF10 59 1690 103 0.07 59 448 26 0.01
KBKF50 299 52 170 18 774 0.45 299 6288 2227 0.12
KBKF100 599 214 270 154 299 3.77 599 22 588 16 192 0.86
KBKF200 1199 868 470 1 309 559 30.70 1199 85 188 126 375 7.95
KBKF500 2999 5 471 070 23 622 369 497.32 2999 512 988 2 229 195 124.10

literals.

In addition to the handcrafted QRAT proofs, we implemented a tool (called ld2qrat)
that, based on our simulation, transforms long-distance-resolution proofs into QRAT
proofs. We used ld2qrat to transform the long-distance-resolution proofs of the KBKFn

formulas (by Egly et al. [ELW13]) into QRAT proofs and validated the correctness of
these proofs with the proof checker QRAT-trim. In the plain mode, ld2qrat closely
follows our simulation. Additionally, it features two optimizations: (1) Given an LQ-res
step upon l with the antecedents (C ∨ l ∨ x) and (D ∨ l̄ ∨ x̄), if one of x or x̄ is already a
blocked literal, it is removed with blocked-literal elimination. This avoids the introduction
of new variables. (2) Clauses are deleted as soon as they are not needed later in the proof
anymore.

Table 6.2 shows properties of the QRAT proofs produced by ld2qrat from the long-
distance-resolution proofs of the KBKF formulas. On the left are the sizes of proofs
obtained without the clause-deletion optimization. On the right are the sizes of proofs with
this optimization. A (least squares) regression analysis confirms that the length (number
of steps) of the QRAT proofs without deletion is quadratically related to the length of the
corresponding long-distance-resolution proofs: The function f(x) = 0.22x2−4.48x+54.58
(where x is the length of the long-distance-resolution proof and f(x) is the length of
the QRAT proof) fits the data from the above tables perfectly (the error term R2 of the
regression is 1).

6.7 QRAT and Other Resolution-Based Proof Systems

After the analysis of QRAT in theory and practice, we now relate it to popular resolution-
based proof systems for QBF. An overview of the relationships between these systems is
illustrated in Figure 6.2. Besides the long-distance-resolution calculus LQ-Res, another
well-known proof system is the calculus QU-Res [VG12a], which extends the basic Q-
resolution calculus (Q-Res) by allowing resolution upon universals literals if the resulting
resolvent does not contain complementary literals. As QRAT also allows resolution
upon universal literals, it simulates QU-Res. Balabanov et al. [BWJ14] showed the
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incomparability between LQ-Res and QU-Res by exponential separations. It thus follows
that QRAT is strictly stronger than both LQ-Res and QU-Res.

Another proof system that is stronger than both LQ-Res and QU-Res is the calculus
LQU+-Res [BWJ14], which extends LQ-Res by allowing (long-distance) resolution upon
universals literals. We know that either QRAT is strictly stronger than LQU+-Res or the
two systems are incomparable: On purely existentially-quantified formulas, LQU+-Res
boils down to ordinary propositional resolution (without complementary literals in
resolvents) whereas the QRAT system boils down to the RAT system [WHHJ14]. As
the RAT system is strictly stronger than resolution—there exist polynomial-size RAT
proofs of the well-known pigeon hole formulas [HHJW15] while resolution proofs of these
formulas are necessarily exponential in size (see Section 3.2)—LQU+-Res cannot simulate
QRAT.

On the other hand, QRAT might be able to simulate LQU+-Res, but not with our
simulation of the long-distance-resolution calculus, because the simulation cannot con-
vert all LQU+-Res proofs into QRAT proofs. To see this, consider the following QBF
∃a∀x∀y∃b.(a ∨ x ∨ b) ∧ (ā ∨ x̄ ∨ b) ∧ (x ∨ b̄) ∧ (x̄ ∨ ȳ ∨ b̄) together with the LQU+-Res
proof [BWJ14]: (x ∨ x̄ ∨ b), (ȳ ∨ b̄), (x ∨ x̄ ∨ ȳ), (x ∨ x̄), (x), ⊥. The proof can be
illustrated as follows:

a ∨ x ∨ b ā ∨ x̄ ∨ b (LQ-res)
x ∨ x̄ ∨ b

x ∨ b̄ x̄ ∨ ȳ ∨ b̄
(QU-res)

ȳ ∨ b̄
(Q-res)

x ∨ x̄ ∨ ȳ
(∀-red)

x ∨ x̄ (∀-red)x (∀-red)
⊥

In our simulation, we first replace the literal x in (a ∨ x ∨ b) by x′ before resolving the
resulting clause (a∨ x′ ∨ b) with (ā∨ x̄∨ b). The replacement of x by x′ also leads to the
addition of x̄′ to (x̄ ∨ ȳ ∨ b̄). If we now perform the universal resolution step of (x ∨ b̄)
with (x̄ ∨ x̄′ ∨ ȳ ∨ b̄), then we obtain the following partial proof:

a ∨ x′ ∨ b ā ∨ x̄ ∨ b (Q-res)
x′ ∨ x̄ ∨ b

x ∨ b̄ x̄ ∨ x̄′ ∨ ȳ ∨ b̄
(QU-res)

x̄′ ∨ ȳ ∨ b̄

The Q-res step upon b is now impossible because x′ is in (x′∨ x̄∨b) and x̄′ is in (x̄′∨ ȳ∨ b̄).
We also cannot eliminate x′ from (x′ ∨ x̄ ∨ b) via blocked-literal elimination: This would
require us to add a new literal x′′ to (x′ ∨ x̄ ∨ b) and to add x̄′′ to (x̄′ ∨ ȳ ∨ b̄) leading to
the new pair x′′, x̄′′ of complementary literals.

Our key result, Lemma 56, does not hold anymore when allowing resolution over universal
literals. Lemma 56 guarantees that whenever a new literal x̄′ is in a proof clause C ′i of
the modified long-distance-resolution proof, then x̄ was contained in the corresponding
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Q-Res [KKF95]

LQ-Res [ZM02, BJ12]

QU-Res [VG12a]

QRAT [HSB16]

LQU+-Res [BWJ14]

?

Figure 6.2: Relationship of QRAT with popular resolution-based proof systems. A
directed edge from a proof system A to a proof system B indicates that A is strictly
stronger than B.

clause Ci in the original proof. The above example shows that resolution over universal
literals destroys this property: Although x̄′ is contained in the clause (x̄′ ∨ ȳ ∨ b̄), the
literal x is not contained in the corresponding clause (y ∨ ȳ ∨ b) of the original proof
because we resolved it away.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

We presented several techniques that improve automated-reasoning engines by modifying
the syntactic structure of logical formulas.

In the first part of this thesis, we showed that there exist redundancy properties for
propositional logic that are more general than blocked clauses while still being local,
meaning that they can be decided by considering only the resolution neighborhood of
a clause. This locality aspect is part of the reason why blocked clauses have been so
successful in the past; it is particularly appealing when dealing with formulas in which
the resolution neighborhoods of clauses are small, even if the formulas themselves are big.

By introducing a semantic notion of blocking, we provided the most general local
redundancy property. With the aim of bringing this semantic blocking notion closer
towards practical SAT solving, we introduced the syntax-based notions of set-blocking and
super-blocking. We showed that set-blocked clauses correspond to conditional autarkies,
and that super-blocked clauses coincide with semantically blocked clauses.

We then dropped the restriction of locality to obtain even stronger redundancy properties,
in particular propagation-redundant clauses and restrictions thereof. We introduced these
new redundancy properties by first presenting a characterization of clause redundancy
that is based on an implication relation between a formula and itself under different
partial assignments. Replacing the implication relation in this characterization by
efficiently decidable notions of implication, we then obtained various polynomially-
checkable redundancy criteria.

We showed that our new redundancy characterization and the corresponding redundancy
properties are closely related to other concepts from the literature such as autarkies,
variable instantiation, and safe assignments, which we can now capture in a uniform
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manner. One of our redundancy properties yields a proof system, called DLPR, that
coincides with DRAT, which is the de facto standard in SAT solving. Other redundancy
properties yield proof systems (SPR and PR as well as their deletion variants DSPR and
DPR) that are exponentially stronger than resolution, even if they are not allowed to
introduce new variables. We demonstrated this by constructing short proofs without new
variables for the well-known pigeon hole formulas. An empirical evaluation shows that
our proofs are much smaller than existing clausal proofs and that their correctness can
be checked much faster.

To bring these proof systems closer to automated reasoning, we invented a SAT solving
paradigm called satisfaction-driven clause learning (SDCL). SDCL generalizes the popular
conflict-driven clause learning paradigm by pruning the search space more aggressively.
It performs this pruning by learning propagation-redundant clauses, which means that it
can produce proofs in the PR proof system. Experiments show that the SDCL solver
SaDiCaL can efficiently prove the unsatisfiability of the Tseitin formulas, pigeon hole
formulas, and mutilated chessboard problems. Because of theoretical restrictions caused
by the weakness of the resolution proof system, CDCL solvers require exponential time to
solve these formulas. We therefore believe that SDCL—when combined with sophisticated
heuristics and encodings—is a promising SAT-solving paradigm for formulas that are too
hard for ordinary CDCL solvers.

In a subsequent part of the thesis, we lifted several popular redundancy properties
from propositional logic to first-order logic. To do so, we introduced the principle
of implication modulo resolution and its equality variant, the principle of implication
modulo flat resolution. This allowed us to prove the correctness of the lifted redundancy
properties in a uniform way. We also showed how implication modulo flat resolution
yields a short soundness proof for the existing technique of predicate elimination [KK16]
and we analyzed confluence properties of clause-elimination techniques based on the new
redundancy properties. To illustrate the usefulness of these techniques, we implemented
one of them—blocked-clause elimination. In an empirical evaluation, we showed that
blocked-clause elimination is beneficial for modern provers in many cases, especially when
dealing with satisfiable input formulas. Blocked-clause elimination has therefore become
a part of the theorem prover Vampire, which is arguably the most efficient theorem
prover for first-order logic.

Finally, we used syntactic modification techniques to show that the QRAT proof system
polynomially simulates long-distance resolution. In our simulation, we used only a
subset of the QRAT rules: Q-resolution, universal reduction, blocked-literal addition,
and blocked-literal elimination. Based on our simulation, we implemented a tool that
transforms long-distance-resolution proofs into QRAT proofs. The tool allows to merge a
QRAT derivation produced by a QBF-preprocessor with a long-distance-resolution proof
produced by a search-based solver. The correctness of the resulting QRAT proof can then
be checked with a proof checker such as QRAT-trim [HSB16]. We evaluated the tool on
long-distance-resolution proofs of the Kleine Büning formulas and manually constructed
QRAT proofs of these formulas that are smaller than their long-distance counterparts.
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7.2 Future Work
Regarding redundancy properties, we plan to lift the notions of set-blocked clauses and
propagation-redundant clauses to QBF. As the elimination of redundant clauses has been
shown to improve the performance of QBF solvers [BLS11, LBB+15, LE18], we hope
that the elimination of set-blocked clauses and propagation-redundant clauses can lead
to further performance improvements.

There are still many open questions revolving around our propositional proof systems.
In a recent paper, we proved that extended resolution polynomially simulates the DRAT
proof system [KRH18]. The combination of this simulation with the simulation that
translates DPR proofs into DRAT proofs [HB18] demonstrates that extended resolution
polynomially simulates the DPR proof system and therefore also its restricted variants.
However, it is an open question how the DPR proof system without new variables relates
to other strong proof systems for propositional logic like the polynomial calculus, cutting
planes, or even Frege systems. Other open questions are related to the space and width
bounds of the smallest DPR proofs, again without new variables. Apart from these
theoretical questions, we also want to implement a formally-verified proof checker for
DPR proofs.

Although our satisfaction-driven clause learning paradigm can already solve formulas that
are too hard for CDCL solvers, it is still outperformed by CDCL solvers on many simpler
formulas. This seems to suggest that also in SAT solving, there is no free lunch. However,
we believe that the performance of SDCL on simple formulas can be improved by tuning
the solver more carefully. For instance, by only learning propagation-redundant clauses
when this is really beneficial, or by coming up with a dedicated decision heuristic. To deal
with these problems, we are currently investigating an approach based on reinforcement
learning.

In the first-order logic part of this thesis, we already hinted at some future work regarding
our redundancy properties. Although we have notions of covered clauses and resolution
asymmetric tautologies for first-order logic without equality, we still want to provide
proper variants for first-order logic with equality. Moreover, the only clause-elimination
technique we have implemented so far is blocked-clause elimination. We therefore also
want to implement clause-elimination techniques for the other redundancy properties
we presented. Implementing a technique for clause elimination is arguably easier than
implementing clause addition. The reason for this is that coming up with useful clauses
whose addition boosts prover performance is a non-trivial problem whereas just eliminating
existing clauses is straightforward. We therefore also want to spend more efforts on
finding beneficial clause-addition techniques in the future.

When it comes to the QRAT proof system, we illustrated that our simulation breaks down
if the long-distance-resolution calculus is extended by resolution upon universal literals,
as in the calculus LQU+-Res [BWJ14]. Investigating the exact relationship between
LQU+-Res and QRAT therefore remains open for future work. Another open question is
whether or not blocked-literal elimination can be polynomially simulated in LQU+-Res.

117



7. Conclusion and Future Work

We also don’t know if long-distance resolution can be simulated with only Q-resolution,
universal reduction, clause deletion, and blocked-literal elimination (but without blocked-
literal addition, as in our current simulation). Finally, what is still unclear is how QRAT
relates to instantiation-based proof systems and sequent proof systems. Answers to these
questions will shed more light on the proof-complexity landscape of QBF.
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