
Propositional Proof Skeletons?

Joseph E. Reeves1 , Benjamin Kiesl-Reiter2 , and Marijn J. H. Heule1,2

1 Carnegie Mellon University, Pittsburgh, PA, United States
2 Amazon Web Services, Seattle, WA, United States

{jereeves,mheule}@cs.cmu.edu, benkiesl@amazon.com

Abstract. Modern SAT solvers produce proofs of unsatisfiability to jus-
tify the correctness of their results. These proofs, which are usually repre-
sented in the well-known DRAT format, can often become huge, requiring
multiple gigabytes of disk storage. We present a technique for semantic
proof compression that selects a subset of important clauses from a proof
and stores them as a so-called proof skeleton. This proof skeleton can
later be used to efficiently reconstruct a full proof by exploiting paral-
lelism. We implemented our approach on top of the award-winning SAT
solver CaDiCaL and the proof checker DRAT-trim. In an experimental
evaluation, we demonstrate that we can compress proofs into skeletons
that are 100 to 5,000 times smaller than the original proofs. For almost
all problems, proof reconstruction using a skeleton improves the solving
time on a single core, and is around five times faster when using 24 cores.

Keywords: SAT solving · proofs · compression.

1 Introduction

Solvers for the Boolean satisfiability problem (SAT) take as input a formula of
propositional logic and decide if the formula is satisfiable. In case of satisfiability,
they usually return an assignment of truth values to the variables of the formula;
by plugging these truth values into the formula, users can easily convince them-
selves that the solver was right and that the formula is indeed satisfiable. In
case of unsatisfiability, however, things are more complicated: to justify their
answer, solvers need to produce an independently checkable proof that none of
the—exponentially many—potential truth assignments make the formula true.

In practical SAT solving, proofs of unsatisfiability are represented in the
DRAT format [11], and they are often huge, requiring several gigabytes (in some
cases even terabytes [13] or petabytes [12]) of disk storage. Storing proofs is thus
costly, especially since users might not require access to the proofs until sometime
long after solving, at a point when proof verification or further analysis is desired.
? Supported by the U.S. National Science Foundation under grant CCF-2229099, and
supported in part by a fellowship award under contract FA9550-21-F-0003 through
the National Defense Science and Engineering Graduate (NDSEG) Fellowship Pro-
gram, sponsored by the Air Force Research Laboratory (AFRL), the Office of Naval
Research (ONR) and the Army Research Office (ARO).

http://orcid.org/0000-0002-4585-0565
http://orcid.org/0000-0003-3522-3653
http://orcid.org/0000-0002-5587-8801

2 Reeves et al.

Up to now, the only options to deal with this problem were either to not
store proofs and instead recompute them on demand—a laborious but plausible
approach considering that proof checking typically takes longer than solving—or
to use compression methods to reduce proof size. However, syntactic compression
techniques (such as LZMA or DEFLATE, as supported by the ZIP file format)
only provide moderate levels of compression. The same can be said about existing
semantic compression techniques for proofs in SAT and SMT (c.f. [4, 18, 21]),
which only achieve 20% compression on average.

In this paper, we present a novel approach to semantic compression that
stores only a small subset of the clauses derived by a solver, called a proof
skeleton. We can achieve strong compression rates with proof skeletons (around
100 to 5,000 times smaller than the original proof), while still retaining enough
information to allow for a quick on-demand reconstruction of a complete proof
that might differ from the original proof. This is similar to how a mathematician
might put down the most important reasoning steps of a proof in a proof sketch,
enabling a moderately talented reader to fill in the gaps. In our case, the gaps can
even be filled independently, meaning that multiple readers can work in parallel.

We present both an online version (creating a proof skeleton during solv-
ing) and an offline version (creating a proof skeleton from a full proof) of our
approach. We select the clauses that end up in a proof skeleton by relying on
several heuristics such as glue (a heuristic used internally by solvers to estimate
the usefulness of clauses) for online and clause activity (a measure of how often a
clause is used to derive new clauses) for offline. To reconstruct a full proof from a
proof skeleton, we utilize multiple incremental SAT solvers that can run in paral-
lel. We implemented all our algorithms on top of the award-winning SAT solver
CaDiCaL [2] and the proof checker DRAT-trim [22]. In an extensive empirical
evaluation, we demonstrate the feasibility of our approach, with all code and
data available at https://github.com/amazon-science/unsat-proof-skeletons.

Beyond being a tool for compression, proof skeletons can also serve as a
source of insight into a solver’s reasoning. Getting any sort of intuition from a
million-line proof is difficult; by computing a skeleton, we obtain a small set of
facts—logically implied by the problem—that can give us an idea of how a solver
established the unsatisfiability of a formula. This can lead to a feedback loop
that improves solver performance. For example, when inspecting skeletons for
some bounded-model-checking benchmarks, we observed many unit clauses and
binary clauses of a certain type. From this, we hypothesized that the problems
required more preprocessing, which did indeed improve performance.

Our main contributions are as follows: (1) We present a semantic approach
for proof compression that selects only the most important clauses of a proof.
(2) We implemented an online version and an offline version of our approach on
top of the SAT solver CaDiCaL and the proof checker DRAT-trim. (3) In an
extensive empirical evaluation, we demonstrate that our approach can drastically
reduce proof size while still enabling efficient proof reconstruction.

The rest of this paper is structured as follows. In Section 2, we discuss back-
ground required to understand our paper and review related work. In Section 3,

https://github.com/amazon-science/unsat-proof-skeletons

Propositional Proof Skeletons 3

we outline the main idea behind our proof-compression approach. In Section 4,
we show multiple ways to create proof skeletons, and in Section 5 we show how
to reconstruct full proofs from skeletons. Finally, in Section 6, we present an
empirical evaluation of our approach before concluding in Section 7.

2 Background and Related Work

The Boolean satisfiability problem (SAT) takes as input a formula of proposi-
tional logic and asks if there exists a truth assignment under which the formula
evaluates to true. As is common in SAT solving, we consider propositional for-
mulas in conjunctive normal form (CNF), which are defined as follows. A literal
is either a variable x (a positive literal) or the negation x̄ of a variable x (a
negative literal). The complement l̄ of a literal l is defined as l̄ = x̄ if l = x
and as l̄ = x if l = x̄. For a literal l, we denote the variable of l by var(l).
A clause is a finite disjunction of the form (l1 ∨ · · · ∨ ln), where l1, . . . , ln are
literals. Clauses with only one literal are called unit clauses and clauses with two
literals are called binary clauses. We denote the empty clause by ⊥. A formula
is a finite conjunction of the form C1 ∧ · · · ∧ Cm, where C1, . . . , Cm are clauses.
For example, (x∨ ȳ)∧ (z)∧ (x̄∨ z̄) is a formula consisting of the clauses (x∨ ȳ),
(z), and (x̄ ∨ z̄).

A truth assignment (or assignment for short) is a function from a set of
variables to the truth values 1 (true) and 0 (false). A literal l is satisfied by an
assignment α if l is positive and α(var(l)) = 1 or if l is negative and α(var(l)) =
0. A literal l is falsified by an assignment if its complement l̄ is satisfied by the
assignment. A clause C is satisfied by an assignment α if α satisfies at least
one of C’s literals. A formula ψ is satisfied by an assignment α if α satisfies
all of ψ’s clauses. A formula is satisfiable if there exists an assignment that
satisfies it, otherwise it is unsatisfiable. A clause C = (l1 ∨ · · · ∨ lk) is implied
by a formula ψ, denoted by ψ |= C, if all satisfying assignments of ψ satisfy C,
or equivalently, if ψ ∧ C̄ is unsatisfiable, where C̄ = (l̄1) ∧ · · · ∧ (l̄k). In case a
formula is satisfiable, modern solvers can output a satisfying assignment; in case
the formula is unsatisfiable, most solvers can output a proof of unsatisfiability.

Proofs of Unsatisfiability. State-of-the-art SAT solvers produce so-called clausal
proofs. Intuitively, a clausal proof is a list of clause additions and clause deletions.
Formally, a clausal proof is a list of pairs 〈s1, C1〉, . . . , 〈sm, Cm〉, where for each
i ∈ 1, . . . ,m, si ∈ {a, d} and Ci is a clause. If si = a, the pair is called an
addition, and if si = d, it is called a deletion. For a given input formula ψ0, a
clausal proof gives rise to accumulated formulas ψi (i ∈ 1, . . . ,m) as follows:

ψi =

{
ψi−1 ∪ {Ci} if si = a

ψi−1 \ {Ci} if si = d

The clauses of an accumulated formula ψi are also called the active clauses
at point i. Clause additions must preserve satisfiability, which is usually guaran-
teed by requiring the added clauses to fulfill some efficiently decidable syntactic

4 Reeves et al.

criterion that itself implies satisfiability is preserved. Deletions are unrestricted
and are not useful for proving unsatisfiability as they only make a formula “more
satisfiable”; their main purpose is to speed up proof checking by keeping the set
of active clauses small. A valid proof of unsatisfiability must end with the addi-
tion of the empty clause. As the empty clause is trivially unsatisfiable, and since
all proof steps preserve satisfiability, the unsatisfiability of the original formula
can then be concluded.

Clausal proof systems are distinguished by the syntactic criterion they impose
on clause additions. The standard SAT solving paradigm conflict-driven clause
learning (CDCL) [16,19] adds so-called RUP (short for reverse unit propagation)
clauses [9], whose definition is based on the notion of unit propagation. Unit prop-
agation is the process of repeatedly applying the unit-clause rule to a formula
until no unit clauses are left. Given a formula ψ, the unit-clause rule takes a unit
clause (l) and makes its literal l true, meaning that (1) all clauses that contain
l are removed from ψ, and (2) the negation l̄ of l is removed from all remaining
clauses. If unit propagation produces the empty clause, we say it derived a con-
flict. For example, unit propagation derives a conflict on (x) ∧ (x̄ ∨ y) ∧ (x̄ ∨ ȳ)
as the application of the unit-clause rule for (x) produces the formula (y) ∧ (ȳ),
on which another application of the unit-clause rule, with either of (y) or (ȳ),
produces the empty clause. If unit propagation derives a conflict on a formula,
the formula is clearly unsatisfiable, but not vice versa.

A clause C = (l1 ∨ · · · ∨ lk) is a RUP for a formula ψ if unit propagation
derives a conflict on ψ ∧ C̄. If C is a RUP for ψ, it is implied by ψ since ψ ∧ C̄
is unsatisfiable; we thus sometimes write ψ `1 C to denote that C is a RUP
for ψ. The clausal proof system allowing the addition of RUP clauses together
with deletions is called DRUP. Solvers participating in the SAT competition
must produce DRAT proofs, but since each DRUP proof is also a DRAT proof
(but not vice versa) and since all state-of-the-art solvers actually produce DRUP
proofs by default, we restrict this study of proof compression to DRUP proofs.

A proof checker is an independent tool that verifies the correctness of proofs.
There exist formally verified proof checkers that provide strong correctness guar-
antees (c.f., [5, 10, 15, 20]). Because these tools are inefficient, proofs are often
passed through an—efficient but unverified—intermediary proof checker (such
as DRAT-trim [22]) that transforms a DRAT proof into a so-called LRAT
proof [5]. The resulting LRAT proof includes additional information (called
hints), which allows a formally verified checker to efficiently check the proof.

3 Problem Overview

We want to compress proofs into small representations that can be efficiently
decompressed into full proofs. Existing techniques for SAT and SMT focus
on transformations and substitutions that preserve validity to generate smaller
proofs [4,18,21]. We achieve greater compression by storing only a so-called proof
skeleton, which itself is not a valid proof.

Propositional Proof Skeletons 5

Tools like Sledgehammer [3] automatically solve proof obligations from
interactive theorem provers, filling gaps in the proof by translating lower-level
reasoning into the theorem provers’ logic. More recent work proposed a method
for constructing proofs for complex SMT rewriting steps on demand in a post-
processing step [17]. In a similar way, we use proof skeletons to efficiently recon-
struct valid proofs that can differ from the original proofs.

Suppose you solved an unsatisfiable CNF formula ψ, and out of the many
facts you learned during solving, there were three facts A, B, and C, which you
deem particularly important for showing the unsatisfiability of ψ. You can then
build a proof skeleton from A, B, and C. Later, you can rephrase the question
ψ |= ⊥ (“does ψ imply the empty clause?”, or equivalently, “is ψ unsatisfiable?”)
into the following questions:

ψ |= A ψ ∧A |= B ψ ∧A ∧B |= C ψ ∧A ∧B ∧ C |= ⊥

Not only do A, B, and C provide a way to partition the proof effort, when
ordered carefully, they can be used as assumptions in subsequent questions.
Each question can be submitted to a solver independently, and combining the
four resulting proofs will give a proof of the original claim that ψ is unsatisfiable.

Our work translates this general schema to the realm of SAT by (1) deter-
mining which learned clauses from a SAT solver are most useful and should be
stored in a proof skeleton; (2) carefully grouping solver calls to prevent repeated
work when producing partial proofs from a proof skeleton; and (3) stitching the
partial proofs together to generate a complete proof.

Determining which clauses are stored in a proof skeleton. We co-opt the clause-
importance metrics used by CDCL solvers. We give a brief overview of these
metrics in the following. CDCL solvers make progress by continuously learning
new clauses that help them prune the search space of possible truth assignments.
To limit memory usage, they occasionally perform a clause database reduction,
removing a large portion of learned clauses based on some usefulness heuristics.
Most solvers keep clauses that are short, have low glue value, are reason clauses,
or have been used recently. The glue of a clause (also known as its literal block
distance, or LBD) is a positive integer that estimates the usefulness of a clause.
Intuitively, a low glue value means that few decisions are required to falsify the
clause, which is considered good. For a more extensive discussion of glue, we
refer to the respective literature [1]. A reason clause is a clause that was used by
the solver when performing unit propagation, meaning that the clause became
a unit clause under a partial assignment. The number of times a reason clause
is used during conflict analysis is considered the clause’s activity.

Grouping solver calls for partial proofs. We leverage incremental SAT to con-
struct partial proofs. An incremental SAT solver solves a problem with several
related steps, with the solver retaining state (e.g., learned clauses and heuris-
tics) between steps; it also allows solving under so-called assumptions, which are

6 Reeves et al.

literals assumed to be true in a step. Solving a sequence of related steps incre-
mentally is often much faster than solving them independently of each other (for
more details on incremental SAT see, e.g., [6]).

Given a formula ψ and a sequence C1, . . . , Cn of clauses, we want to produce
a DRUP proof of ψ |= Ci for each i ∈ 1, . . . , n. We use an incremental solver
to produce partial proofs, with each solving step corresponding to a clause Ci.
For the first step, ψ |= C1, we pass the assumptions C̄1 = l̄1 ∧ · · · ∧ l̄k to the
incremental solver. Given the formula ψ, the solver assigns the literals in the
assumptions, then runs the CDCL algorithm until it derives the empty clause.
During solving, CDCL guarantees that all learned clauses are RUPs for the
input formula ψ. Let φ1 denote the sequence of clauses learned by the solver.
Then, since unit propagation under the assumptions l̄1 ∧ · · · ∧ l̄k derived the
empty clause, C1 is by definition a RUP for ψ ∧ φ1. This means that C1 can be
appended to the corresponding proof of the solver (which derives all clauses in
φ1) to obtain a valid DRUP derivation of C1 from ψ.

In the next step, the clause C2 is handled similarly, except the solver retains
the learned clauses φ1∧C1 when proving that C2 is a RUP clause. This continues
until all n + 1 steps corresponding to the n clauses of the proof skeleton are
completed (step n+ 1 corresponds to the derivation of the empty clause).

To parallelize this reasoning, we use an approach akin to divide-and-conquer
techniques established in parallel SAT solving [14]. Divide-and-conquer solvers
first partition a problem into multiple subproblems and then solve the subprob-
lems in parallel. Similarly, we divide the incremental solver steps into so-called
chunks, which are independent groups of subsequent solver steps. For example,
we can split the solver steps into one chunk containing the first half of steps
and another chunk containing the second half of steps. Both chunks can then be
solved in parallel by two independent incremental SAT solvers.

Stitching partial proofs together. Once we have partial proofs for all n+1 solving
steps, a full proof of unsatisfiability can be constructed as the sequence of clause
additions arising from φ1, C1, φ2, C2, . . . , Cn, φn+1,⊥, where φi is the sequence
of learned clauses by the i-th solver step, as explained above. In general, clauses
are added and deleted during solving, so the proof can be augmented with the
deletion information contained in the proofs emitted by a solver. But, we need
to ensure clauses are not deleted in the proof and then implicitly reintroduced
into a solver, which can occur when inprocessing techniques touch variables in
the assumptions. We use variable freezing [7] to freeze all variables occurring in
C1, . . . , Cn; this avoids any unsound inprocessing [8], and is required to ensure
correctness of the proofs.

4 Creating Proof Skeletons

Given a clausal proof P = 〈s1, C1〉, . . . , 〈sm, Cm〉, we define a proof skeleton of P
to be a sequence of clauses obtained from clause additions in P . Ideally, a skele-
ton is small but contains enough useful clauses to guide reasoning during proof

Propositional Proof Skeletons 7

reconstruction. A proof skeleton can be constructed online, during the solver’s
execution, by applying a filter to clauses as they are traced to a proof. Alterna-
tively, a proof skeleton can be constructed offline, after solving, by processing
the full proof and selecting important clauses.

4.1 Online Generation of Proof Skeletons

We create proof skeletons online by filtering clause additions as the solver traces
them to a proof. Clauses that pass a usefulness threshold are added to the
skeleton. As mentioned earlier, the filter applies usefulness heuristics from CDCL
including glue and clause activity. Additionally, at certain intervals we add reason
clauses to the skeleton. We implemented the filter within the solver CaDiCaL,
giving us access to these values as well as to the reason clauses (through the trail
of assignments). We also enabled logging, giving every clause a unique identifier,
in order to sort the skeletons. We evaluate three different configurations:

– Glue: Clauses with glue lower than 3.
– Glue+Trail: Clauses with glue lower than 3, and all reason clauses on the

trail before each clause-database reduction.
– Dynamic: Clauses with glue lower than some dynamically adjusted thresh-

old glued, and all reason clauses on the trail every 50,000 learned clauses.

The first two configurations combine low-glue clauses with either no or some
reason clauses. Increasing the glue value threshold often led to a compression of
less than 1,000 times and slower reconstruction. Reason clauses are important
because they are actively used by the solver whereas for low-glue clauses this
is not guaranteed (although low glue is associated with high usage in general).
Clause-database reductions are sparse, so reason clauses (which are added only
during these reductions) will be added infrequently. We evaluate the impact of
including reason clauses in the skeletons in Section 6.3.

In the first two configurations, all clauses passing the filter are accepted into
the skeleton. For some formulas, a solver will produce many low-glue clauses
and the skeleton will become too large, and for others too few low-glue clauses
will lead to a small skeleton. Our third configuration accounts for the differences
between formulas by adjusting heuristics dynamically to meet a desired com-
pression ratio. The heuristics are updated based on the number of clauses added
to the skeleton within some number of conflicts, denoted as window c. For a com-
pression ratio between 500 and 1,000, and a window c value of 5,000, we tuned
the Dynamic configuration in the following way: every 5,000 conflicts, if more
than 25 (window c/200) lemmas passed the filter, the glued value is decreased,
and if less than 3 lemmas (window c/2,000) passed the filter, the glued value is
increased. Reasons from the trail are added every 50,000 conflicts (window c×10).

For configurations using reason clauses, the unique clause IDs are used to
sort the skeleton. This is necessary because reason clauses are traced during
reductions, so they may initially appear in the skeleton long after they were
learned by the solver. During proof reconstruction it is important that clauses
appear in the skeleton in an order that corresponds with a solver’s reasoning.

8 Reeves et al.

We implemented additional configurations using clause activities. For this,
we incremented an activity field for each clause every time it was used during
conflict analysis. An evaluation of these additional configurations is beyond the
scope of this paper, but data can be found in the paper’s repository.

4.2 Offline Generation of Proof Skeletons

We create proof skeletons offline by processing a full proof and selecting the
most active clauses. Given a DRAT proof, the tool DRAT-trim uses backwards
checking to generate an optimized LRAT proof and, optionally, an UNSAT core
(i.e., an unsatisfiable subset of the original formula). From the LRAT proof,
we can estimate a clause’s activity by counting the number of times the clause
appears in a hint of a clause-addition step. We then add the clauses with the
highest activity to the skeleton until a target compression ratio is met. We found
for most problems the target 1,000 provided optimal reconstruction performance.
We sort the skeleton by each clause’s first use as a hint in the LRAT proof,
signifying when a clause is actually used as opposed to when it is learned. We
evaluate three configurations for offline generation:

– Offline: Select 1,000 times fewer clauses than in the original DRAT proof.
– Offline+Units: Additionally include all unit clauses from the proof.
– Offline-Opt: Select 1,000 times fewer clauses than in the optimized LRAT

proof.

The motivation for Offline-Opt is that some optimized LRAT proofs have
significantly fewer clauses than the DRAT proofs, resulting from many unused
lemmas, which suggests that stronger compression is possible.

Offline construction requires expensive post-processing with DRAT-trim.
However, during online construction we can only guess the future usefulness
of clauses when they are derived, by relying on heuristics such as glue, but we
cannot know how often a clause will actually be used. For instance, it may be that
a clause has low glue (predicting high usefulness) but is learned and then never
used in the rest of the proof, making it worthless in the skeleton. In contrast,
when constructing a skeleton offline—after solving—we know already how often
the clause was actually used in reasoning throughout the proof, and whether it
was used to derive the empty clause. Also, we can use the UNSAT core instead
of the original formula when reconstructing a proof for the original problem.

5 Reconstructing Proofs from Skeletons

We reconstruct proofs by filling the gaps of a proof skeleton with a SAT solver.
Once we have proofs for all gaps, we stitch them together with the clauses of the
skeleton to create a complete proof. We can utilize information obtained during
proof reconstruction to further shrink skeletons by removing less useful clauses.
Finally, we can also use a skeleton to create an optimized LRAT proof.

Propositional Proof Skeletons 9

Proof

C1

C2

C3

C4

C5

...

Skeleton

C2

C5

...

Reconstruction

ψ |= C2

C2

ψ ∧ C2 |= C5

C5

...

ψ ∧ Skeleton |= ⊥

Incremental Reconstruction

ψ |= C2 : φ1

C2

ψ ∧ C2 ∧ φ1 |= C5 : φ2

C5

...

ψ ∧ Skeleton ∧ φ |= ⊥

Fig. 1. Proof reconstruction from a proof skeleton and a formula φ by filling in the
gaps between skeleton clauses. This can be done with independent SAT calls or with
an incremental SAT solver that keeps learned clauses (φi) between steps.

5.1 Filling Skeletons Using Incremental Solvers

We consider two ways of filling a proof skeleton’s gaps—reconstruction and in-
cremental reconstruction; both are illustrated in Fig. 1. Given a formula φ and
a skeleton C1, . . . , Cn, reconstruction fills each gap ψ ∧ C1 ∧ · · · ∧ Ci−1 |= Ci

using independent SAT solver calls, with ψ1 ∧ C1 ∧ · · · ∧ Cn |= ⊥ as the final
call. Filling a gap for Ci = (l1 ∨ · · · ∨ lk) involves assuming l̄1 ∧ · · · ∧ l̄k and
deriving the empty clause with proof φ, which proves that Ci is a RUP for
ψ ∧ C1 ∧ · · · ∧ Ci−1 ∧ φ. Each gap has an associated DRUP proof φi emitted
by the solver. Since RUP is a monotonic property, the clauses added in φi will
not affect the validity of φj for i < j. However, clause deletions could make
the proof φ1, 〈a, C1〉, φ2, 〈a, C2〉, . . . , 〈a, Cn〉, φn+1,⊥ incorrect. For example, if a
skeleton clause C1 is deleted in φ2, then φ3 (stemming from ψ ∧ C1 ∧ C2 |= C3)
may use C2—a clause already deleted in the proof. The same problem could oc-
cur if formula clauses are deleted. Therefore, we must remove any deletion steps
for clauses of the skeleton or of the formula clauses from each φi.

The second approach, incremental reconstruction, uses an incremental SAT
solver, which allows the use of learned clauses when filling subsequent gaps.
Specifically, we create an incremental problem with the steps assume(C̄1), . . . ,
assume(C̄n), assume(∅), where each step assume(C̄i), with Ci = (l1 ∨ · · · ∨ lk),
involves assuming l̄1∧· · ·∧l̄k and deriving the empty clause. Each step produces a
proof φi, and the complete proof φ1, 〈a, C1〉, φ2, 〈a, C2〉, . . . , 〈a, Cn〉, φn+1, 〈a,⊥〉
is correct as long as variables occurring in skeleton clauses are frozen (as de-
scribed in Section 3). With this approach, we no longer need to worry about
deletions of skeleton clauses or formula clauses because the solver fills each gap
using the current clause database, i.e., each gap is proved without clauses for-
merly deleted by the solver.

To parallelize incremental reconstruction, we partition the incremental prob-
lem into several independent incremental problems, which we call chunks. We
assign k clauses Cl, . . . , Cl+k−1 from the skeleton to each chunk, and we then use
an incremental solver to compute partial proofs for each of the clauses, starting

10 Reeves et al.

from the formula ψ ∧ C1 ∧ · · · ∧ Cl−1. For each partial proof corresponding to
a clause Ci, we call the solver with the assumptions negating the clause, i.e.,
with assume(C̄i). Again, we must remove any deletion steps of skeleton clauses
or formula clauses since they may be used in later chunks. All added clauses are
then RUPs, and so the concatenation of chunk proofs is a complete proof.

Each chunk can be solved independently in parallel. The more skeleton
clauses in each chunk, the more clauses the incremental solver can learn and
reuse in subsequent steps. However, gaps might differ in hardness, meaning that
some gaps can be filled quickly while others require a significant amount of
solving time. A chunk can thus become a bottleneck during parallelization if
it includes many difficult gaps. In our evaluation, we partitioned the skeleton
into chunks of equal size, one for each core. For instance, on a single core, one
incremental problem spanning the entire skeleton was given to a solver instance
whereas for 24 cores, the skeleton was partitioned into 24 chunks. In principle,
we could partition a skeleton into more chunks than cores, but this would require
an intermediary level of problem scheduling that we leave for future work.

5.2 Shrinking Skeletons

The runtimes for filling each gap of a proof skeleton could provide insight into
the usefulness of the skeleton clauses. For example, if the solver can quickly fill
a gap, the corresponding skeleton clause may be trivially implied, and if the
solver takes long, the clause may be useful since its derivation requires a lot of
reasoning. Alternatively, the difference in runtime might not be explained by
clause usefulness. Take, for example, the two gaps ψ |= C2 and ψ ∧ C2 |= C5

from Fig. 1, and assume that the solver fills the first gap in a millisecond and the
second gap in ten seconds. If the difference is a result of C2 being trivially implied,
it makes sense to remove C2 from the skeleton; otherwise, if the difference is
due to factors unrelated to usefulness, it is better to remove C5. Based on this
observation, we try to shrink a given skeleton by sorting gap reconstruction times
and removing a certain share of the slowest or fastest clauses.

Our empirical evaluation in Section 6 indicates that removing the fastest
clauses is the right approach for improving compression and (sometimes) re-
ducing reconstruction time. Even though gap runtime and clause usefulness are
correlated, the correlation is not perfect. For instance, sometimes the incremen-
tal solver is able to quickly fill a gap because of learning from previous steps of
the incremental problem. Even if it takes a long time to fill a gap, there is no
guarantee that the corresponding skeleton clause is useful for filling future gaps.
We examine in detail how shrinking skeletons affects reconstruction time.

5.3 Reconstructing LRAT Proofs from Skeletons

The proof reconstruction described above will produce DRAT proofs. Formally
verified checkers typically require LRAT proofs, forcing a conversion via a proof
checker such as DRAT-trim, which can take much longer than the original

Propositional Proof Skeletons 11

solving time. Instead, we can reconstruct DRAT proofs for each chunk, then
convert the DRAT proofs to LRAT in parallel, and finally concatenate them.

We use DRAT-trim to convert chunk DRAT proofs to LRAT. This re-
quired us to modify DRAT-trim (e.g., by changing the way it performs back-
wards checking, and how it handles unit clauses). By default, DRAT-trim starts
backwards checking at the empty clause. But, only the last chunk will derive the
empty clause, and further, we must ensure all skeleton clauses are included in
the backwards check, as they may be used in later chunks. To account for this,
we mark each skeleton clause in the DRAT proof before performing the back-
wards check. The backwards check verifies that each marked clause is RAT (or
RUP, in our case), including the clauses in the LRAT proof. When combining the
chunk LRAT proofs, we map the skeleton clauses in each chunk to the index of
the LRAT step where they were initially added. Finally, we remove all deletions
from the LRAT proof, but this will not affect proof-checking time, mainly since
LRAT checkers perform unit propagation in linear time using hints. While the
following evaluation focuses on DRAT proof reconstruction from skeletons, we
tested our implementation of parallel LRAT proof reconstruction on 24 cores,
and verified several proofs with Cake-LPR [20].

6 Experimental Evaluation

We evaluated our approach on SAT competition 2021 Main Track benchmarks,
using all (65) unsatisfiable formulas that were solved between 500 and 5,000 sec-
onds by the solver CaDiCaL [2]. By requiring at least 500 seconds of solving
time, we ensured that proofs are of reasonable size (around 1 GB) and there-
fore good candidates for compression. We ran experiments on an AWS EC2
m5d.metal instance, with 96 virtual CPUs and 500 GB of memory, running at
most 24 parallel processes at a time. We used a timeout of 5,000 seconds for
solving a problem and constructing a DRAT proof. For proof reconstruction on
a single core we used a single incremental problem spanning the entire skeleton.
For proof reconstruction on 24 cores, we evenly divided the proof skeleton into 24
incremental problems (chunks) passed to 24 instances of CaDiCaL. We report
real time for proof reconstruction, not including skeleton extraction.

6.1 Single-Core Proof Reconstruction

Fig. 2 shows the best configurations on each formula using online skeletons (left)
and offline skeletons (right), for the single-core experiments (i.e., the entire skele-
ton on a single core). Almost all proofs were reconstructed faster than the orig-
inal solving time (below the red dotted line), and in some cases more than five
times faster (below the blue dotted line). Each configuration was the best for
some formulas. The Glue configuration led the online skeletons. With a single
incremental problem, learned clauses from earlier incremental calls can be kept
for the entire execution, meaning that clauses that occur later in large skeletons
(e.g., Glue+Trail) may be trivially implied by previously learned clauses.

12 Reeves et al.

101 102 103 104
101

102

103

104

Original Runtime

R
ec
on

st
ru
ct
io
n
R
un

ti
m
e

Best Online Configuration

5×’s speedup
Glue
Glue+Trail
Dynamic

101 102 103 104
101

102

103

104

Original Runtime (seconds)

Best Offline Configuration

5×’s speedup
Offline
Offline+Units
Offline-Opt

Fig. 2. Runtimes (in seconds) of best online (left) and offline (right) configurations for
proof reconstruction using a proof skeleton and a single core.

0 10 20 30 40 50 60
101

102

103

104

105

106

Formula

C
om

pr
es
si
on

R
at
io

Online Compression Ratio

5000×’s
100×’s
Glue
Glue+Trail
Dynamic
Best (Reconstruction-Time)

0 10 20 30 40 50 60
101

102

103

104

105

106

Formula

Offline Compression Ratio

5000×’s
100×’s
Offline
Offline+Units
Offline-Opt
Best (Reconstruction-Time)

Fig. 3. Proof skeleton compression ratio for online (left) and offline (right).

6.2 Skeleton Compression Ratio

Fig. 3 shows the sorted compression ratios (w.r.t. file size) between proof skele-
tons and the original DRAT proofs for each configuration as well as the com-
pression ratios for the configuration with the fastest reconstruction time on each
formula (Best). For online configurations (left), the Dynamic skeletons have the
most consistent compression ratios, with a tradeoff in reconstruction times. In
some cases, skeletons can have higher compression (10,000 times) without a loss
in performance, witnessed by the right-hand-side tail of the plot.

For offline configurations (right), Offline selects 1/1,000 of the clauses from
the original DRAT proof. The ratios are much greater than 1,000 because skele-

Propositional Proof Skeletons 13

101 102 103 104
101

102

103

104

Glue

G
lu

e+
T

r
a
il

Single Core

101 102 103 104
101

102

103

104

Glue

24 Cores

Fig. 4. Runtimes (in seconds) for proof reconstruction of multiple online configurations
with a single core (left) and 24 cores (right).

tons have no deletion information and the most active clauses are typically much
shorter than the average clause. Offline-Opt provides around a factor 10 more
compression, and these smaller skeletons provide faster reconstruction for about
half of the formulas. In general, the compression is much better when using clause
activity as a measure for clause importance as opposed to online heuristics (such
as glue), with similar reconstruction times seen in Fig. 2.

6.3 Impact of Reason Clauses in Online Skeletons

Fig. 4 shows a comparison of reconstruction times between the Glue and the
Glue+Trail online configurations, both on a single core (left) and on 24 cores
(right). On a single core, creating skeletons with only low-glue clauses performs
better than creating skeletons with low-glue clauses and reasons from the trail.
On multiple cores, however, the reason clauses are beneficial for many reconstruc-
tions. This may be because for parallel reconstruction, each individual chunk only
has access to lemmas earlier in the skeleton during solving. Therefore, having
more clauses in the skeleton will aid the later chunks. In contrast, for a single
chunk on one core, learned clauses are kept throughout solving, and these learned
clauses supplement the smaller skeletons.

6.4 Impact of the UNSAT Core on Offline Skeletons

Fig. 5 shows the effect of using an UNSAT core during reconstruction for offline
skeletons on a single core (left) and on 24 cores (right). For the experiments
using an UNSAT core, we remove formula clauses that are not in the UNSAT
core before passing the formula to the solver during the incremental SAT call for
the chunk proof. Using the UNSAT core greatly improves performance during

14 Reeves et al.

101 102 103 104
101

102

103

104

Offline

O
ff

li
n
e
an

d
U
N
SA

T
C
or
e

Single Core

101 102 103 104
101

102

103

104

Offline

24 Cores

Fig. 5. Runtimes (in seconds) for Offline proof reconstruction with and without an
UNSAT core with a single core (left) and 24 cores (right).

reconstruction on a single core. This may be because the skeleton is built from
reasoning based on the UNSAT core, so focusing the solver on these specific
formula clauses makes filling the gaps in the skeleton easier. The UNSAT core is
useful in parallel reconstruction as well, producing the overall best configuration
between online and offline skeletons. To give an idea, it takes approximately 125
KB to store an UNSAT core as a bit vector (each bit indicating whether or not
a clause is part of the core) for a formula with one million clauses. For most
formulas, this data would be dominated by the size of the proof skeleton.

6.5 Skeleton Shrinking after Reconstruction

We discussed in Section 5.2 that it might make sense to shrink a skeleton by
removing some amount of the fastest or of the slowest skeleton clauses. Fig. 6
shows results for reconstruction on 24 cores using the online skeleton, removing
either the fastest 90% or the slowest 10% of clauses. To perform the shrinking,
we performed proof reconstruction from the skeleton and measured the solve
times for the incremental calls, with each call corresponding to a skeleton clause.
Removing the fastest 90% has a small impact on reconstruction time, performing
slower for the majority of formulas. In some cases, shrinking the skeleton even
improves performance because redundant or unnecessary clauses are removed
from the skeleton. Removing the slowest solved clauses causes a wider variation
in reconstruction time. This might be because these clauses are important for
guiding the solver during reconstruction, and sometimes they lead the solver into
unprofitable search regions that waste time. This shows two things: (1) For some
formulas, removing only a fraction of clauses from the skeleton can lead to a big
or small improvement, and (2) skeleton clauses are mostly nontrivial and cannot
be added or removed randomly without a potentially consequential impact.

Propositional Proof Skeletons 15

101 102 103 104
101

102

103

104

No Shrink

Sh
ri
nk

Shrink Fastest 90%

101 102 103 104
101

102

103

104

No Shrink

Shrink Slowest 10%

Fig. 6. Runtimes (in seconds) of proof reconstruction on 24 cores after skeleton shrink-
ing for the Dynamic online configuration, removing the fastest 90% (left) or the slowest
10% (right) of clauses from the skeleton.

101 102 103 104
101

102

103

104

Original Runtime

R
ec
on

st
ru
ct
io
n
R
un

ti
m
e

Proof Reconstruction on 24 Cores

5×’s speedup

101 102 103 104
101

102

103

104

Parallel SAT Solvers

R
ec
on

st
ru
ct
io
n
to

D
R
A
T

Proof Reconstruction vs. Parallel SAT

Mallob
iLingeling

Fig. 7. Left: Runtimes (in seconds) of original solver on a single core against proof re-
construction on 24 cores with the best offline-skeleton configurations Offline+Units
using UNSAT cores. Right: Runtimes (in seconds) of parallel SAT solvers Mallob
and Lingeling without proof logging against proof reconstruction with the best of-
fline skeleton configurations using an UNSAT core, each using 24 cores.

6.6 Comparison With Sequential and Parallel SAT Solvers

Alternatives to our proof reconstruction could be to compute a proof on demand
by solving a formula from scratch (either with a sequential or with a parallel SAT
solver) or to run a parallel incremental solver that fills the gaps of a skeleton.

The left plot of Fig. 7 shows the difference between running a sequential solver
on a single core versus running our parallel proof reconstruction on 24 cores. For

16 Reeves et al.

the majority of formulas, parallel proof reconstruction is over five times faster,
and in some cases closer to ten times faster. One formula had little improvement
for reconstruction (on the red dotted line). For this formula, the final chunk took
around 2,000 seconds to solve, and the next slowest chunk took only 24 seconds,
meaning the hardest gaps were all clustered in the final chunk. For these sorts of
problems, a smaller chunk size could break up the hard gaps, therefore improving
utilization across cores and reducing the reconstruction time.

To our knowledge, there exist no portfolio solvers or parallel incremental
solvers that produce proofs. However, it might be possible to add proof support
to solvers like Mallob (a clause-sharing portfolio solver) or iLingeling (a
parallel incremental solver); we thus compare our approach to these solvers in
the right plot of Fig. 7.

The comparison to Mallob suggests that some form of clause sharing be-
tween solvers that solve independent chunks may improve performance. This
could be achieved with forward clause sharing, where learned clauses can only
be sent to solvers running on subsequent chunks. Also, Mallob has full core
utilization by running each solver until one derives the empty clause, but our
proof reconstruction does not since some chunks take longer than others. With
smaller chunk sizes and good scheduling, proof reconstruction could get closer
to full utilization.

iLingeling, which is based on Lingeling [2], takes an incremental problem
and greedily assigns steps to solver instances, terminating when one instance
derives the empty clause. There is no clause sharing between solvers. We ran
iLingeling using the incremental problem derived from the proof skeleton. In
proof reconstruction, chunks can use skeleton clauses from previous chunks, lead-
ing to consistently better performance than iLingeling.

7 Conclusion

We presented a semantic approach for compressing propositional proofs by se-
lecting important clauses that summarize the reasoning of a solver. We store
these clauses in a so-called proof skeleton, from which we can reconstruct a com-
plete proof in parallel by performing multiple incremental SAT solver calls. We
implemented our approach on top of the SAT solver CaDiCaL and the proof
checker DRAT-trim. In an empirical evaluation, we showed that our approach
can produce skeletons that are 100 to 5,000 times smaller than the original proofs.
On a single core, almost all proofs were reconstructed faster than the original
solving time, and when using 24 cores, the majority of proofs was reconstructed
around five times faster. This is significant since proof checking typically takes
longer than solving, and since existing parallel solvers cannot produce proofs
while maintaining strong performance. We observed that proof skeletons not
only serve as a compression mechanism but also provide insight into a problem.
In future work, we thus plan to explore the connection between skeletons, proofs,
and solver performance.

Propositional Proof Skeletons 17

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
pp. 399–404 (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

2. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

3. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

4. Boudou, J., Fellner, A., Paleo, B.W.: Skeptik: A proof compression system. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning - 7th In-
ternational Joint Conference, IJCAR 2014, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8562, pp. 374–380. Springer (2014), https:
//doi.org/10.1007/978-3-319-08587-6_29

5. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) Automated Deduction -
CADE 26 - 26th International Conference on Automated Deduction, Gothenburg,
Sweden, August 6-11, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10395, pp. 220–236. Springer (2017), https://doi.org/10.1007/978-3-319-63046-5_
14

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003), https://doi.org/10.1007/978-3-540-24605-3_37

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Elec-
tron. Notes Theor. Comput. Sci. 89(4), 543–560 (2003), https://doi.org/10.1016/
S1571-0661(05)82542-3

8. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11628, pp. 136–154.
Springer (2019), https://doi.org/10.1007/978-3-030-24258-9_9

9. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In:
International Symposium on Artificial Intelligence and Mathematics,
ISAIM 2008, Fort Lauderdale, Florida, USA, January 2-4, 2008 (2008),
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_
60a1f9b2fd607a61ec9e0feac3f438f8.pdf

10. Heule, M., Jr., W.A.H., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive Theo-
rem Proving - 8th International Conference, ITP 2017, Brasília, Brazil, September
26-29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10499, pp. 269–
284. Springer (2017), https://doi.org/10.1007/978-3-319-66107-0_18

11. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR abs/1610.06229
(2016), http://arxiv.org/abs/1610.06229

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-319-08587-6_29
https://doi.org/10.1007/978-3-319-08587-6_29
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/978-3-030-24258-9_9
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
http://isaim2008.unl.edu/PAPERS/TechnicalProgram/ISAIM2008_0008_60a1f9b2fd607a61ec9e0feac3f438f8.pdf
https://doi.org/10.1007/978-3-319-66107-0_18
http://arxiv.org/abs/1610.06229

18 Reeves et al.

12. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger, K.Q. (eds.)
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18). pp. 6598–6606. AAAI Press (2018), https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16952

13. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) Theory and Applications of Satisfiability Testing – SAT 2016. pp. 228–245.
Springer International Publishing, Cham (2016)

14. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guid-
ing CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O.
(eds.) Hardware and Software: Verification and Testing. pp. 50–65. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

15. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020), https://doi.org/10.1007/s10817-019-09525-z

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. pp. 530–535. ACM
(2001), https://doi.org/10.1145/378239.379017

17. Nötzli, A., Barbosa, H., Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli,
C.: Reconstructing fine-grained proofs of rewrites using a domain-specific language.
In: Griggio, A., Rungta, N. (eds.) Formal Methods in Computer-Aided Design -
22nd Conference, FMCAD 2022, Trento, Italy, October 17-21, 2022, Proceedings.
pp. 65–74. Formal Methods in Computer-Aided Design, TU Wien Academic Press
(2022)

18. Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof trans-
formation for compression and interpolation. Formal Methods Syst. Des. 45(1),
1–41 (2014), https://doi.org/10.1007/s10703-014-0208-x

19. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Trans. Computers 48(5), 506–521 (1999), https://doi.org/10.1109/
12.769433

20. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: Verified propagation redun-
dancy checking in CakeML. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems - 27th International Con-
ference, TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652,
pp. 223–241. Springer (2021), https://doi.org/10.1007/978-3-030-72013-1_12

21. Vyskocil, J., Stanovský, D., Urban, J.: Automated proof compression by invention
of new definitions. In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16,
Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 6355, pp. 447–462. Springer (2010), https://doi.org/10.
1007/978-3-642-17511-4_25

22. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Theory and Applications of Satisfiability
Testing (SAT). LNCS, vol. 8561, pp. 422–429 (2014)

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/s10703-014-0208-x
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/978-3-642-17511-4_25
https://doi.org/10.1007/978-3-642-17511-4_25

	Propositional Proof Skeletons

